Z-Splat: Z-Axis Gaussian Splatting for Camera-Sonar Fusion.
Journal
IEEE transactions on pattern analysis and machine intelligence
ISSN: 1939-3539
Titre abrégé: IEEE Trans Pattern Anal Mach Intell
Pays: United States
ID NLM: 9885960
Informations de publication
Date de publication:
23 Sep 2024
23 Sep 2024
Historique:
medline:
23
9
2024
pubmed:
23
9
2024
entrez:
23
9
2024
Statut:
aheadofprint
Résumé
Differentiable 3D-Gaussian splatting (GS) is emerging as a prominent technique in computer vision and graphics for reconstructing 3D scenes. GS represents a scene as a set of 3D Gaussians with varying opacities and employs a computationally efficient splatting operation along with analytical derivatives to compute the 3D Gaussian parameters given scene images captured from various viewpoints. Unfortunately, capturing surround view (360° viewpoint) images is impossible or impractical in many real-world imaging scenarios, including underwater imaging, rooms inside a building, and autonomous navigation. In these restricted baseline imaging scenarios, the GS algorithm suffers from a well-known 'missing cone' problem, which results in poor reconstruction along the depth axis. In this paper, we demonstrate that using transient data (from sonars) allows us to address the missing cone problem by sampling high-frequency data along the depth axis. We extend the Gaussian splatting algorithms for two commonly used sonars and propose fusion algorithms that simultaneously utilize RGB camera data and sonar data. Through simulations, emulations, and hardware experiments across various imaging scenarios, we show that the proposed fusion algorithms lead to significantly better novel view synthesis (5 dB improvement in PSNR) and 3D geometry reconstruction (60% lower Chamfer distance).
Identifiants
pubmed: 39312437
doi: 10.1109/TPAMI.2024.3462290
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM