Liposome-based Freezing Medium Improves the Outcome of Mouse Prepubertal Testicular Tissue Cryopreservation.
Apoptosis
Cryosurvival
Oncofertility
Oxidative stress
Vimentin
Journal
Reproductive sciences (Thousand Oaks, Calif.)
ISSN: 1933-7205
Titre abrégé: Reprod Sci
Pays: United States
ID NLM: 101291249
Informations de publication
Date de publication:
19 Sep 2024
19 Sep 2024
Historique:
received:
07
05
2024
accepted:
22
08
2024
medline:
20
9
2024
pubmed:
20
9
2024
entrez:
19
9
2024
Statut:
aheadofprint
Résumé
Cryopreservation of testicular tissue holds an important role in the field of fertility preservation, particularly for prepubertal boys diagnosed with cancer. However, prepubertal testicular tissue cryopreservation is still considered to be in the experimental stage necessitating the refinement of cryopreservation protocol. Considering the fact that loss of membrane lipids is the primary cause of freeze-thaw-induced loss of testicular cell functions, in this study, we explored the beneficial properties of exogenous supplementation of membrane lipids in the form of liposomes in enhancing the cryosurvival of prepubertal testicular tissue. The freezing medium supplemented with liposomes (prepared from soy lecithin, phosphatidylethanolamine, phosphatidylserine, and cholesterol) was used for the experiments. Prepubertal testicular tissues from Swiss albino mice were cryopreserved in a liposome-containing freezing medium (LFM) composed of 0.25 mg/mL liposomes, 5% DMSO, and 30% FCS in the DMEM/F12 medium using a slow freezing protocol. The tissues were thawed and assessed for various testicular cell functions. Freezing in LFM mitigated the loss of viability, decreased malondialdehyde level (p < 0.05), and reduced apoptosis (p < 0.05) in the testicular cells compared to the testicular tissue cryopreserved in the control freezing medium (CFM). Further, DMSO (5%) appears to be the ideal penetrating cryoprotectant for prepubertal testicular tissue cryopreservation with liposome-based freezing medium. Similar enhancement in cryosurvival of cells was observed in adult human testicular tissue frozen with LFM. These findings highlight the translational value of liposome-based freezing medium in the cryopreservation of testicular tissue of prepubertal boys undergoing chemotherapy.
Identifiants
pubmed: 39300034
doi: 10.1007/s43032-024-01688-4
pii: 10.1007/s43032-024-01688-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Indian Council of Medical Research
ID : ICMR
Organisme : Indian Council of Medical Research
ID : 5/10/FR/5/2015-RCH
Informations de copyright
© 2024. The Author(s).
Références
Onofre J, Baert Y, Faes K, Goossens E. Cryopreservation of testicular tissue or testicular cell suspensions: a pivotal step in fertility preservation. Hum Reprod Update. 2016;22:744–61. https://doi.org/10.1093/humupd/dmw029 .
doi: 10.1093/humupd/dmw029
pubmed: 27566839
pmcid: 5099994
Braye A, Tournaye H, Goossens E. Setting up a cryopreservation programme for immature testicular tissue: lessons learned after more than 15 years of experience. Clin Med Insights Reprod Health. 2019;13:117955811988634. https://doi.org/10.1177/1179558119886342 .
doi: 10.1177/1179558119886342
Goossens E , Jahnukainen K, Mitchell R, Pelt A. van, Pennings G, Rives N, Poels J, Wyns C, Lane S, Rodriguez-Wallberg K, Rives A, Valli-Pulaski H, Steimer S, Kliesch S, Braye A, Andres M, Medrano J, Ramos L, Kristensen S, Andersen C, Bjarnason R, Orwig K, Neuhaus N, Stukenborg J. Fertility preservation in boys: recent developments and new insights †. Hum Reprod Open 2020 (2020). https://doi.org/10.1093/hropen/hoaa016
Tang W, Yan J, Wang T, Xia X, Zhuang X, Hong K, Li R, Liu P, Jiang H, Qiao J. Up-regulation of heme oxygenase-1 expression modulates reactive oxygen species level during the cryopreservation of human seminiferous tubules. Fertil Steril. 2014;102:974-980.e4. https://doi.org/10.1016/j.fertnstert.2014.07.736 .
doi: 10.1016/j.fertnstert.2014.07.736
pubmed: 25150395
Bischof JC, Wolkers WF, Tsvetkova NM, Oliver AE, Crowe JH. Lipid and protein changes due to freezing in dunning AT-1 cells. Cryobiology. 2002;45:22–32. https://doi.org/10.1016/S0011-2240(02)00103-7 .
doi: 10.1016/S0011-2240(02)00103-7
pubmed: 12445547
Buhr MM, Curtis EF, Kakuda NS. Composition and Behavior of Head Membrane Lipids of Fresh and Cryopreserved Boar Sperm. Cryobiology. 1994;31:224–38. https://doi.org/10.1006/cryo.1994.1028 .
doi: 10.1006/cryo.1994.1028
pubmed: 8050268
Chakrabarty J, Banerjee D, Pal D, De J, Ghosh A, Majumder GC. Shedding off specific lipid constituents from sperm cell membrane during cryopreservation. Cryobiology. 2007;54:27–35. https://doi.org/10.1016/j.cryobiol.2006.10.191 .
doi: 10.1016/j.cryobiol.2006.10.191
pubmed: 17227673
Hinkovska-Galcheva V, Petkova D, Koumanov K. Changes in the phospholipid composition and phospholipid asymmetry of ram sperm plasma membranes after cryopreservation. Cryobiology. 1989;26:70–5. https://doi.org/10.1016/0011-2240(89)90034-5 .
doi: 10.1016/0011-2240(89)90034-5
pubmed: 2924594
U. Bhojoo, M. Chen, S. Zou, Temperature induced lipid membrane restructuring and changes in nanomechanics, Biochimica et Biophysica Acta (BBA) - Biomembranes 1860 (2018) 700–709. https://doi.org/10.1016/j.bbamem.2017.12.008
Sun L, Böckmann RA. Membrane phase transition during heating and cooling: molecular insight into reversible melting. Eur Biophys J. 2018;47:151–64. https://doi.org/10.1007/s00249-017-1237-3 .
doi: 10.1007/s00249-017-1237-3
pubmed: 28725998
Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med. 2006;12:440–50. https://doi.org/10.1016/j.molmed.2006.07.007 .
doi: 10.1016/j.molmed.2006.07.007
pubmed: 16899408
Lusignan MF, Li X, Herrero B, Delbes G, Chan PTK. Effects of different cryopreservation methods on DNA integrity and sperm chromatin quality in men. Andrology. 2018;6:829–35. https://doi.org/10.1111/andr.12529 .
doi: 10.1111/andr.12529
pubmed: 30175448
Sun TC, Liu XC, Yang SH, Song LL, Zhou SJ, Deng SL, Tian L, Cheng LY. Melatonin inhibits oxidative stress and apoptosis in cryopreserved ovarian tissues via nrf2/ho-1 signaling pathway. Front Mol Biosci 7 (2020). https://doi.org/10.3389/fmolb.2020.00163
Gholami M, Saki G, Hemadi M, Khodadadi A, Mohamma-di-Asl J. Effect of melatonin on the expression of apoptotic genes in vitrified-thawed spermatogonia stem cells type a of 6-day-old mice, Iran J Basic. Med Sci. 2013;16:906–9.
Len JS , Koh WSD, Tan S-X. The roles of reactive oxygen species and antioxidants in cryopreservation, Biosci Rep 39 (2019). https://doi.org/10.1042/BSR20191601
Zini A, San Gabriel M, Baazeem A. Antioxidants and sperm DNA damage: a clinical perspective. J Assist Reprod Genet. 2009;26:427–32. https://doi.org/10.1007/s10815-009-9343-5 .
doi: 10.1007/s10815-009-9343-5
pubmed: 19768529
pmcid: 2767489
Liu X, Xu Y, Liu F, Pan Y, Miao L, Zhu Q, Tan S. The feasibility of antioxidants avoiding oxidative damages from reactive oxygen species in cryopreservation. Front Chem. 2021;9:648684. https://doi.org/10.3389/fchem.2021.648684 .
doi: 10.3389/fchem.2021.648684
pubmed: 33718331
pmcid: 7952315
Abdelnour SA, Hassan MAE, Ahmed M, Shehabeldin, Mohamed.E.A. Omar, W.A. Khalil, R.M. Aman,. Effects of propolis-loaded nanoliposomes fortification in extender on buffalo semen cryopreservation. Sci Rep. 2023;13:10621. https://doi.org/10.1038/s41598-023-37424-2 .
doi: 10.1038/s41598-023-37424-2
pubmed: 37391447
pmcid: 10313678
Hassan MAE, Khalil WA, Abdelnour SA, Aman RM. Supplementation of Alpha-lipoic acid-loaded nanoliposomes in semen extender improves freezability of buffalo spermatozoa. Sci Rep. 2022;12:22464. https://doi.org/10.1038/s41598-022-26960-y .
doi: 10.1038/s41598-022-26960-y
pubmed: 36577772
pmcid: 9797474
Mutalik S, Salian SR, Avadhani K, Menon J, Joshi H, Hegde AR, Kumar P, Kalthur G, Adiga SK. Liposome encapsulated soy lecithin and cholesterol can efficiently replace chicken egg yolk in human semen cryopreservation medium. Syst Biol Reprod Med. 2014;60:183–8. https://doi.org/10.3109/19396368.2014.902521 .
doi: 10.3109/19396368.2014.902521
pubmed: 24654557
Scott KL, William N, Acker JP. The response of a human haematopoietic cell line to trehalose-loaded liposomes and their effect on post-thaw membrane integrity. Cryobiology. 2022;106:160–3. https://doi.org/10.1016/j.cryobiol.2022.03.005 .
doi: 10.1016/j.cryobiol.2022.03.005
pubmed: 35413361
Talsma H, Steenbergen MJv, Salemink PJM, Crommelin DJA. Liposomes as a model system for the cryopreservation of peripheral blood cells, in: cryopreservation and low temperature biology in blood transfusion, Springer US, Boston, MA, 1990: pp. 87–90. https://doi.org/10.1007/978-1-4613-1515-5_6
Jeyendran RS, Acosta VC, Land S, Coulam CB. Cryopreservation of human sperm in a lecithin-supplemented freezing medium. Fertil Steril. 2008;90:1263–5. https://doi.org/10.1016/j.fertnstert.2007.10.068 .
doi: 10.1016/j.fertnstert.2007.10.068
pubmed: 18249371
Ferreira G, Costa C, Bassaizteguy V, Santos M, Cardozo R, Montes J, Settineri R, Nicolson GL. Incubation of human sperm with micelles made from glycerophospholipid mixtures increases sperm motility and resistance to oxidative stress. PLoS ONE. 2018;13:e0197897. https://doi.org/10.1371/journal.pone.0197897 .
doi: 10.1371/journal.pone.0197897
pubmed: 29856778
pmcid: 5984032
Onofre J, Kadam P, Baert Y, Goossens E. Testicular tissue cryopreservation is the preferred method to preserve spermatogonial stem cells prior to transplantation. Reprod Biomed Online. 2020;40:261–9. https://doi.org/10.1016/j.rbmo.2019.10.016 .
doi: 10.1016/j.rbmo.2019.10.016
pubmed: 32001160
Milazzo JP, Vaudreuil L, Cauliez B, Gruel E, Massé L, Mousset-Siméon N, Macé B, Rives N. Comparison of conditions for cryopreservation of testicular tissue from immature mice. Hum Reprod. 2008;23:17–28. https://doi.org/10.1093/humrep/dem355 .
doi: 10.1093/humrep/dem355
pubmed: 17989070
Nayak G, Honguntikar SD, Kalthur SG, D’Souza AS, Mutalik S, Setty MM, Kalyankumar R, Krishnamurthy H, Kalthur G, Adiga SK. Ethanolic extract of Moringa oleifera Lam. leaves protect the pre-pubertal spermatogonial cells from cyclophosphamide-induced damage. J Ethnopharmacol. 2016;182:101–9. https://doi.org/10.1016/j.jep.2016.02.003 .
doi: 10.1016/j.jep.2016.02.003
pubmed: 26875643
S. Zaqout, L.-L. Becker, A.M. Kaindl, Immunofluorescence Staining of Paraffin Sections Step by Step. Front Neuroanat 14 (2020). https://doi.org/10.3389/fnana.2020.582218
Ernst O, Zor T. Linearization of the bradford protein assay. J Vis Exp. 2010. https://doi.org/10.3791/1918 .
doi: 10.3791/1918
pubmed: 20386536
pmcid: 3164080
Dcunha R, Kumari S, Najar MA, Aravind A, Suvarna KS, Hanumappa A, Mutalik SP, Mutalik S, Kalthur SG, Rajanikant GK, Siddiqui S, Alrumman S, Alamri SAM, Raghu SV, Adiga SK, Kannan N, ThottethodiSubrahmanya KP, Kalthur G. High doses of clethodim-based herbicide GrassOut Max poses reproductive hazard by affecting male reproductive function and early embryogenesis in Swiss albino mice. Chemosphere. 2023;336:139215. https://doi.org/10.1016/j.chemosphere.2023.139215 .
doi: 10.1016/j.chemosphere.2023.139215
pubmed: 37336444
Rao A, Nayak G, Kumari S, Prabhu AD, Khandige N, Kalthur SG, Mutalik S, Kalthur G, Adiga SK. Ethambutol induces testicular damage and decreases the sperm functional competence in Swiss albino mice. Environ Toxicol Pharmacol. 2016;47:28–37. https://doi.org/10.1016/j.etap.2016.08.012 .
doi: 10.1016/j.etap.2016.08.012
pubmed: 27579587
Kumari S, Dcunha R, Sanghvi SP, Nayak G, Kalthur SG, Raut SY, Mutalik S, Siddiqui S, Alrumman SA, Adiga SK, Kalthur G. Organophosphorus pesticide quinalphos (Ekalux 25 E.C.) reduces sperm functional competence and decreases the fertilisation potential in Swiss albino mice. Andrologia. 2021;53:e14115. https://doi.org/10.1111/and.14115 .
doi: 10.1111/and.14115
pubmed: 34014595
Gouk SS, Jason Loh YF, Kumar SD, Watson PF, Kuleshova LL. Cryopreservation of mouse testicular tissue: prospect for harvesting spermatogonial stem cells for fertility preservation. Fertil Steril. 2011;95:2399–403. https://doi.org/10.1016/j.fertnstert.2011.03.035 .
doi: 10.1016/j.fertnstert.2011.03.035
pubmed: 21481372
P. Peris-Frau, J. Benito-Blanco, E. Martínez-Nevado, A. Toledano-Díaz, C. Castaño, R. Velázquez, B. Pequeño, B. Martinez-Madrid, M.C. Esteso, J. Santiago-Moreno, DNA integrity and viability of testicular cells from diverse wild species after slow freezing or vitrification,. . Front Vet Sci 9 (2023). https://doi.org/10.3389/fvets.2022.1114695
X. Zhu, P. Miller-Ezzy, Y. Zhao, J. Qin, Y. Tang, Y. Liu, X. Li, Lipid modification to improve cryotolerance of gametes, embryos and larvae and its potential application in aquaculture species: a review, Front Mar Sci 10 (2023). https://doi.org/10.3389/fmars.2023.1235958
He L, Bailey JL, Buhr MM. Incorporating lipids into boar sperm decreases chilling sensitivity but not capacitation potential1. Biol Reprod. 2001;64:69–79. https://doi.org/10.1095/biolreprod64.1.69 .
doi: 10.1095/biolreprod64.1.69
pubmed: 11133660
Mendoza-Viveros CD, Gutiérrez-Pérez O, Bernad-Bernad MJ, Medina-Torres L, Monroy-Barreto M, Gimeno M, Trujillo-Ortega ME. Boar semen cryopreserved with trehalose-containing liposomes: disaccharide determination and rheological behaviour. Zygote. 2022;30:895–902. https://doi.org/10.1017/S0967199422000442 .
doi: 10.1017/S0967199422000442
pubmed: 36106583
M. Tar, A. Towhidi, S. Zeinoaldini, M. Zhandi, A. Mohammadi‐Sangcheshmeh, M.H. Moazeni Zadeh, Effects of different ultrastructures of lecithin on cryosurvival of goat spermatozoa, Andrologia 53 (2021). https://doi.org/10.1111/and.14183
Cirino L, Tsai S, Wang L-H, Chen C-S, Hsieh W-C, Huang C-L, Wen Z-H, Lin C. Supplementation of exogenous lipids via liposomes improves coral larvae settlement post-cryopreservation and nano-laser warming. Cryobiology. 2021;98:80–6. https://doi.org/10.1016/j.cryobiol.2020.12.004 .
doi: 10.1016/j.cryobiol.2020.12.004
pubmed: 33386123
Holovati JL, Gyongyossy-Issa MIC, Acker JP. Effects of trehalose-loaded liposomes on red blood cell response to freezing and post-thaw membrane quality. Cryobiology. 2009;58:75–83. https://doi.org/10.1016/j.cryobiol.2008.11.002 .
doi: 10.1016/j.cryobiol.2008.11.002
pubmed: 19059392
Holt WV, Head MF, North RD. Freeze-induced membrane damage in ram spermatozoa is manifested after thawing: observations with experimental cryomicroscopy1. Biol Reprod. 1992;46:1086–94. https://doi.org/10.1095/biolreprod46.6.1086 .
doi: 10.1095/biolreprod46.6.1086
pubmed: 1391306
M. Mohammadzadeh, H. Hamishehkar, M. Vatanparast, Zh. Akhavan sales, A. Nabi, F. Mazaheri, F. Mohseni, A.R. Talebi, The effect of testosterone and antioxidants nanoliposomes on gene expressions and sperm parameters in asthenospermic individuals, Drug Dev Ind Pharm 47 (2021) 1733–1743 https://doi.org/10.1080/03639045.2022.2042552
Moraveji S-F, Esfandiari F, Sharbatoghli M, Taleahmad S, Nikeghbalian S, Shahverdi A, Baharvand H. Optimizing methods for human testicular tissue cryopreservation and spermatogonial stem cell isolation. J Cell Biochem. 2019;120:613–21. https://doi.org/10.1002/jcb.27419 .
doi: 10.1002/jcb.27419
pubmed: 30242874
Keros V, Hultenby K, Borgström B, Fridström M, Jahnukainen K, Hovatta O. Methods of cryopreservation of testicular tissue with viable spermatogonia in pre-pubertal boys undergoing gonadotoxic cancer treatment. Hum Reprod. 2007;22:1384–95. https://doi.org/10.1093/humrep/del508 .
doi: 10.1093/humrep/del508
pubmed: 17259225
Rives-Feraille A, Liard A, Bubenheim M, Barbotin AL, Giscard d’Estaing S, Mirallié S, Ancelle A, Roux C, Brugnon F, Grèze V, Daudin M, Willson-Plat G, Dubois R, Sibert L, Schneider P, Rives N. Assessment of the architecture and integrity of frozen-thawed testicular tissue from (pre)pubertal boys with cancer. Andrology. 2022;10:279–90. https://doi.org/10.1111/andr.13116 .
doi: 10.1111/andr.13116
pubmed: 34628730
Quinn PJ, Chow PYW, White IG. Evidence that phospholipid protects ram spermatozoa from cold shock at a plasma membrane site. Reproduction. 1980;60:403–7. https://doi.org/10.1530/jrf.0.0600403 .
doi: 10.1530/jrf.0.0600403
Arts EGJM, Kuiken J, Jager S, Hoekstra D. Fusion of artificial membranes with mammalian spermatozoa. Eur J Biochem. 1993;217:1001–9. https://doi.org/10.1111/j.1432-1033.1993.tb18331.x .
doi: 10.1111/j.1432-1033.1993.tb18331.x
pubmed: 8223623
Pillet E, Labbe C, Batellier F, Duchamp G, Beaumal V, Anton M, Desherces S, Schmitt E, Magistrini M. Liposomes as an alternative to egg yolk in stallion freezing extender. Theriogenology. 2012;77:268–79. https://doi.org/10.1016/j.theriogenology.2011.08.001 .
doi: 10.1016/j.theriogenology.2011.08.001
pubmed: 21924469
Heitland AV, Jasko DJ, Graham JK, Squires EL, Amann RP, Pickett BW. Motility and fertility of stallion spermatozoa cooled and frozen in a modified skim milk extender containing egg yolk and liposome1. Biol Reprod. 1995;52:753–9. https://doi.org/10.1093/biolreprod/52.monograph_series1.753 .
doi: 10.1093/biolreprod/52.monograph_series1.753
Wilhelm KM, Graham JK, Squires EL. Effects of phosphatidylserine and cholesterol liposomes on the viability, motility, and acrosomal integrity of stallion spermatozoa prior to and after cryopreservation. Cryobiology. 1996;33:320–9. https://doi.org/10.1006/cryo.1996.0032 .
doi: 10.1006/cryo.1996.0032
pubmed: 8689889
Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon. 2022;8:e09394. https://doi.org/10.1016/j.heliyon.2022.e09394 .
doi: 10.1016/j.heliyon.2022.e09394
pubmed: 35600452
pmcid: 9118483
Kaddah S, Khreich N, Kaddah F, Charcosset C, Greige-Gerges H. Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food Chem Toxicol. 2018;113:40–8. https://doi.org/10.1016/j.fct.2018.01.017 .
doi: 10.1016/j.fct.2018.01.017
pubmed: 29337230
Higgins AZ, Lavarti R, Eroglu B, Ahmadkhani N, Benson JD, Eroglu A. Permeation of individual cryoprotectants and their different combinations into mouse liver tissue. Cryobiology. 2023;111:26–9. https://doi.org/10.1016/j.cryobiol.2023.03.004 .
doi: 10.1016/j.cryobiol.2023.03.004
pubmed: 36934956
Unni S, Kasiviswanathan S, D’Souza S, Khavale S, Mukherjee S, Patwardhan S, Bhartiya D. Efficient cryopreservation of testicular tissue: effect of age, sample state, and concentration of cryoprotectant. Fertil Steril. 2012;97:200-208.e1. https://doi.org/10.1016/j.fertnstert.2011.10.018 .
doi: 10.1016/j.fertnstert.2011.10.018
pubmed: 22100171
Beckman JK, Coniglio JG. A comparative study of the lipid composition of isolated rat sertoli and germinal cells. Lipids. 1979;14:262–7. https://doi.org/10.1007/BF02533912 .
doi: 10.1007/BF02533912
pubmed: 449628
Goossens E, Frederickx V, Geens M, De Block G, Tournaye H. jCryosurvival and spermatogenesis after allografting prepubertal mouse tissue: comparison of two cryopreservation protocols. Fertil Steril. 2008;89:725–7. https://doi.org/10.1016/j.fertnstert.2007.03.044 .
doi: 10.1016/j.fertnstert.2007.03.044
pubmed: 17517406
Zhang X-G, Li H, Hu J-H. Effects of various cryoprotectants on the quality of frozen–thawed immature bovine (Qinchuan cattle) calf testicular tissue. Andrologia. 2017;49:e12743. https://doi.org/10.1111/and.12743 .
doi: 10.1111/and.12743
Keros V, Rosenlund B, Hultenby K, Aghajanova L, Levkov L, Hovatta O. Optimizing cryopreservation of human testicular tissue: comparison of protocols with glycerol, propanediol and dimethylsulphoxide as cryoprotectants. Hum Reprod. 2005;20:1676–87. https://doi.org/10.1093/humrep/deh797 .
doi: 10.1093/humrep/deh797
pubmed: 15860503
Silva AM, Pereira AG, Bezerra LGP, Jerônimo Moreira SS, Pereira AF, Oliveira MF, Comizzoli P, Silva AR. Cryopreservation of testicular tissue from adult red-rumped agoutis (Dasyprocta leporina Linnaeus, 1758). Animals. 2022;12:738. https://doi.org/10.3390/ani12060738 .
doi: 10.3390/ani12060738
pubmed: 35327135
pmcid: 8944822
da Silva AM, Bezerra LGP, Praxedes ECG, Moreira SSJ, de Souza CMP, de Oliveira MF, Pereira AF, Comizzoli P, Silva AR. Combination of intracellular cryoprotectants preserves the structure and the cells proliferative capacity potential of adult collared peccary testicular tissue subjected to solid surface vitrification. Cryobiology. 2019;91:53–60. https://doi.org/10.1016/j.cryobiol.2019.10.199 .
doi: 10.1016/j.cryobiol.2019.10.199
pubmed: 31678072
Best BP. Cryoprotectant Toxicity: Facts, Issues, and Questions. Rejuvenation Res. 2015;18:422–36. https://doi.org/10.1089/rej.2014.1656 .
doi: 10.1089/rej.2014.1656
pubmed: 25826677
pmcid: 4620521
Boafo GF, Magar KT, Ekpo MD, Qian W, Tan S, Chen C. The role of cryoprotective agents in liposome stabilization and preservation. Int J Mol Sci. 2022;23:12487. https://doi.org/10.3390/ijms232012487 .
doi: 10.3390/ijms232012487
pubmed: 36293340
pmcid: 9603853