Novel systematic processing of cardiac magnetic resonance imaging identifies target regions associated with infarct-related ventricular tachycardia.
Ventricular tachycardia
imaging processing
magnetic resonance imaging
radiofrequency ablation
Journal
Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology
ISSN: 1532-2092
Titre abrégé: Europace
Pays: England
ID NLM: 100883649
Informations de publication
Date de publication:
19 Sep 2024
19 Sep 2024
Historique:
received:
27
05
2024
revised:
16
07
2024
accepted:
17
09
2024
medline:
20
9
2024
pubmed:
20
9
2024
entrez:
19
9
2024
Statut:
aheadofprint
Résumé
There is lack of agreement on late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) imaging processing for guiding ventricular tachycardia (VT) ablation. We aim at developing and validating a systematic processing approach on LGE-CMR images to identify VT corridors that contain critical VT isthmus sites. Translational study including 18 pigs with established myocardial infarction and inducible VT undergoing in vivo characterization of the anatomical and functional myocardial substrate associated with VT maintenance. Clinical validation was conducted in a multicenter series of 33 patients with ischemic cardiomyopathy undergoing VT ablation. Three-dimensional CMR-LGE images were processed using systematic scanning of 15 signal intensity (SI) cut-off ranges to obtain surface visualization of all potential VT corridors. Analysis and comparisons of imaging and electrophysiological data were performed in individuals with full electrophysiological characterization of the isthmus sites of at least one VT morphology. In both the experimental pig model and patients undergoing VT ablation, all the electrophysiologically-defined isthmus sites (n=11 and n=19, respectively) showed overlapping regions with CMR-based potential VT corridors. Such imaging-based VT corridors were less specific than electrophysiologically-guided ablation lesions at critical isthmus sites. However, an optimized strategy using the 7 most relevant SI cut-off ranges among patients showed an increase in specificity compared to using 15 SI cut-off ranges (70% vs 62%, respectively), without diminishing the capability to detect VT isthmus sites (sensitivity 100%). Systematic imaging processing of LGE-CMR sequences using several SI cut-off ranges may improve and standardize procedure planning to identify VT isthmus sites.
Sections du résumé
BACKGROUND AND AIMS
OBJECTIVE
There is lack of agreement on late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) imaging processing for guiding ventricular tachycardia (VT) ablation. We aim at developing and validating a systematic processing approach on LGE-CMR images to identify VT corridors that contain critical VT isthmus sites.
METHODS
METHODS
Translational study including 18 pigs with established myocardial infarction and inducible VT undergoing in vivo characterization of the anatomical and functional myocardial substrate associated with VT maintenance. Clinical validation was conducted in a multicenter series of 33 patients with ischemic cardiomyopathy undergoing VT ablation. Three-dimensional CMR-LGE images were processed using systematic scanning of 15 signal intensity (SI) cut-off ranges to obtain surface visualization of all potential VT corridors. Analysis and comparisons of imaging and electrophysiological data were performed in individuals with full electrophysiological characterization of the isthmus sites of at least one VT morphology.
RESULTS
RESULTS
In both the experimental pig model and patients undergoing VT ablation, all the electrophysiologically-defined isthmus sites (n=11 and n=19, respectively) showed overlapping regions with CMR-based potential VT corridors. Such imaging-based VT corridors were less specific than electrophysiologically-guided ablation lesions at critical isthmus sites. However, an optimized strategy using the 7 most relevant SI cut-off ranges among patients showed an increase in specificity compared to using 15 SI cut-off ranges (70% vs 62%, respectively), without diminishing the capability to detect VT isthmus sites (sensitivity 100%).
CONCLUSIONS
CONCLUSIONS
Systematic imaging processing of LGE-CMR sequences using several SI cut-off ranges may improve and standardize procedure planning to identify VT isthmus sites.
Identifiants
pubmed: 39298664
pii: 7762150
doi: 10.1093/europace/euae244
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology.