A comparative analysis of planarian genomes reveals regulatory conservation in the face of rapid structural divergence.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
19 Sep 2024
Historique:
received: 20 01 2024
accepted: 30 08 2024
medline: 19 9 2024
pubmed: 19 9 2024
entrez: 18 9 2024
Statut: epublish

Résumé

The planarian Schmidtea mediterranea is being studied as a model species for regeneration, but the assembly of planarian genomes remains challenging. Here, we report a high-quality haplotype-phased, chromosome-scale genome assembly of the sexual S2 strain of S. mediterranea and high-quality chromosome-scale assemblies of its three close relatives, S. polychroa, S. nova, and S. lugubris. Using hybrid gene annotations and optimized ATAC-seq and ChIP-seq protocols for regulatory element annotation, we provide valuable genome resources for the planarian research community and a first comparative perspective on planarian genome evolution. Our analyses reveal substantial divergence in protein-coding sequences and regulatory regions but considerable conservation within promoter and enhancer annotations. We also find frequent retrotransposon-associated chromosomal inversions and interchromosomal translocations within the genus Schmidtea and, remarkably, independent and nearly complete losses of ancestral metazoan synteny in Schmidtea and two other flatworm groups. Overall, our results suggest that platyhelminth genomes can evolve without syntenic constraints.

Identifiants

pubmed: 39294119
doi: 10.1038/s41467-024-52380-9
pii: 10.1038/s41467-024-52380-9
doi:

Substances chimiques

Retroelements 0

Types de publication

Journal Article Comparative Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

8215

Informations de copyright

© 2024. The Author(s).

Références

Kon, T. et al. The genetic basis of morphological diversity in domesticated goldfish. Curr. Biol. 30, 2260–2274.e6 (2020).
pubmed: 32392470 doi: 10.1016/j.cub.2020.04.034
Gordon, C. T. et al. De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development. Nat. Genet. 49, 249–255 (2017).
pubmed: 28067911 doi: 10.1038/ng.3765
King, M.-C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees: Their macromolecules are so alike that regulatory mutations may account for their biological differences. Science 188, 107–116 (1975).
pubmed: 1090005 doi: 10.1126/science.1090005
Roscito, J. G. et al. Phenotype loss is associated with widespread divergence of the gene regulatory landscape in evolution. Nat. Commun. 9, 4737 (2018).
pubmed: 30413698 pmcid: 6226452 doi: 10.1038/s41467-018-07122-z
Kvon, E. Z. et al. Progressive loss of function in a limb enhancer during snake evolution. Cell 167, 633–642.e11 (2016).
pubmed: 27768887 pmcid: 5484524 doi: 10.1016/j.cell.2016.09.028
Osipova, E. et al. Loss of a gluconeogenic muscle enzyme contributed to adaptive metabolic traits in hummingbirds. Science 379, 185–190 (2023).
pubmed: 36634192 doi: 10.1126/science.abn7050
Bontempo, M. & Luiza, A. Gene losses in the common vampire bat illuminate molecular adaptations to blood feeding. Sci. Adv. 8, eabm6494 (2022).
Simakov, O. et al. Deeply conserved synteny and the evolution of metazoan chromosomes. Sci. Adv. 8, eabi5884 (2022).
pubmed: 35108053 pmcid: 8809688 doi: 10.1126/sciadv.abi5884
Wang, S. et al. Scallop genome provides insights into evolution of bilaterian karyotype and development. Nat. Ecol. Evol. 1, 0120 (2017).
pubmed: 28812685 pmcid: 10970998 doi: 10.1038/s41559-017-0120
Schultz, D. T. et al. Ancient gene linkages support ctenophores as sister to other animals. Nature 1–8 (2023) https://doi.org/10.1038/s41586-023-05936-6 .
Bhutkar, A. et al. Chromosomal rearrangement inferred from comparisons of 12 Drosophila genomes. Genetics 179, 1657–1680 (2008).
pubmed: 18622036 pmcid: 2475759 doi: 10.1534/genetics.107.086108
Tandonnet, S. et al. Chromosome-wide evolution and sex determination in the three-sexed nematode Auanema rhodensis. G3 GenesGenomesGenetics 9, 1211–1230 (2019).
doi: 10.1534/g3.119.0011
Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).
pubmed: 30367165 doi: 10.1038/s41576-018-0060-8
Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).
pubmed: 25497547 pmcid: 5635824 doi: 10.1016/j.cell.2014.11.021
Lupiáñez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025 (2015).
pubmed: 25959774 pmcid: 4791538 doi: 10.1016/j.cell.2015.04.004
Franke, M. et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538, 265–269 (2016).
pubmed: 27706140 doi: 10.1038/nature19800
Alekseyenko, A. A. et al. The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains. Genes Dev. 29, 1507–1523 (2015).
pubmed: 26220994 pmcid: 4526735 doi: 10.1101/gad.267583.115
Akdemir, K. C. et al. Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. Nat. Genet. 52, 294–305 (2020).
pubmed: 32024999 pmcid: 7058537 doi: 10.1038/s41588-019-0564-y
Acemel, R. D. et al. A single three-dimensional chromatin compartment in amphioxus indicates a stepwise evolution of vertebrate Hox bimodal regulation. Nat. Genet. 48, 336–341 (2016).
pubmed: 26829752 doi: 10.1038/ng.3497
Letelier, J. et al. Evolutionary emergence of the rac3b / rfng / sgca regulatory cluster refined mechanisms for hindbrain boundaries formation. Proc. Natl. Acad. Sci. 115, (2018).
Luo, X. et al. 3D Genome of macaque fetal brain reveals evolutionary innovations during primate corticogenesis. Cell 184, 723–740.e21 (2021).
pubmed: 33508230 doi: 10.1016/j.cell.2021.01.001
Hoencamp, C. et al. 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science 372, 984–989 (2021).
pubmed: 34045355 pmcid: 8172041 doi: 10.1126/science.abe2218
Ivankovic, M. et al. Model systems for regeneration: planarians. Development 146, dev167684 (2019).
pubmed: 31511248 doi: 10.1242/dev.167684
Reddien, P. W. The cellular and molecular basis for planarian regeneration. Cell 175, 327–345 (2018).
pubmed: 30290140 pmcid: 7706840 doi: 10.1016/j.cell.2018.09.021
Robb, S. M. C., Gotting, K., Ross, E. & Sánchez Alvarado, A. SmedGD 2.0: The Schmidtea mediterranea genome database. Genesis 53, 535–546 (2015).
pubmed: 26138588 pmcid: 4867232 doi: 10.1002/dvg.22872
Grohme, M. A. et al. The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms. Nature 554, 56–61 (2018).
pubmed: 29364871 pmcid: 5797480 doi: 10.1038/nature25473
Guo, L. et al. Island-specific evolution of a sex-primed autosome in a sexual planarian. Nature 606, 329–334 (2022).
pubmed: 35650439 pmcid: 9177419 doi: 10.1038/s41586-022-04757-3
Guo, L., Zhang, S., Rubinstein, B., Ross, E. & Alvarado, A. S. Widespread maintenance of genome heterozygosity in Schmidtea mediterranea. Nat. Ecol. Evol. 1, 1–10 (2016).
doi: 10.1038/s41559-016-0019
Tian, Q. et al. Whole-genome sequence of the planarian Dugesia japonica combining Illumina and PacBio data. Genomics 114, 110293 (2022).
pubmed: 35139429 doi: 10.1016/j.ygeno.2022.110293
Póti, Á., Szüts, D. & Vermezovic, J. Mutational profile of the regenerative process and de novo genome assembly of the planarian Schmidtea polychroa. Nucleic Acids Res. gkad1250 (2024) https://doi.org/10.1093/nar/gkad1250 .
An, Y. et al. Draft genome of Dugesia japonica provides insights into conserved regulatory elements of the brain restriction gene nou-darake in planarians. Zool. Lett. 4, 24 (2018).
doi: 10.1186/s40851-018-0102-2
Duncan, E. M., Chitsazan, A. D., Seidel, C. W. & Sánchez Alvarado, A. Set1 and MLL1/2 target distinct sets of functionally different genomic loci in vivo. Cell Rep. 13, 2741–2755 (2015).
pubmed: 26711341 pmcid: 4707048 doi: 10.1016/j.celrep.2015.11.059
Dattani, A. et al. Epigenetic analyses of planarian stem cells demonstrate conservation of bivalent histone modifications in animal stem cells. Genome Res. 28, 1543–1554 (2018).
pubmed: 30143598 pmcid: 6169894 doi: 10.1101/gr.239848.118
Mihaylova, Y. et al. Conservation of epigenetic regulation by the MLL3/4 tumour suppressor in planarian pluripotent stem cells. Nat. Commun. 9, 3633 (2018).
Gehrke, A. R. et al. Acoel genome reveals the regulatory landscape of whole-body regeneration. Science 363, eaau6173 (2019).
pubmed: 30872491 doi: 10.1126/science.aau6173
Li, D., Taylor, D. H. & Van Wolfswinkel, J. C. PIWI-mediated control of tissue-specific transposons is essential for somatic cell differentiation. Cell Rep. 37, 109776 (2021).
pubmed: 34610311 pmcid: 8532177 doi: 10.1016/j.celrep.2021.109776
Verma, P., Waterbury, C. K. M. & Duncan, E. M. Set1 targets genes with essential identity and tumor-suppressing functions in planarian stem cells. Genes 12, 1182 (2021).
Neiro, J., Sridhar, D., Dattani, A. & Aboobaker, A. Identification of putative enhancer-like elements predicts regulatory networks active in planarian adult stem cells. eLife 11, e79675 (2022).
pubmed: 35997250 pmcid: 9522251 doi: 10.7554/eLife.79675
Pascual-Carreras, E. et al. Wnt/β-catenin signalling is required for pole-specific chromatin remodeling during planarian regeneration. Nat. Commun. 14, 298 (2023).
pubmed: 36653403 pmcid: 9849279 doi: 10.1038/s41467-023-35937-y
Poulet, A., Kratkiewicz, A. J., Li, D. & van Wolfswinkel, J. C. Chromatin analysis of adult pluripotent stem cells reveals a unique stemness maintenance strategy. Sci. Adv. 9, eadh4887 (2023).
pubmed: 37801496 pmcid: 10558129 doi: 10.1126/sciadv.adh4887
Vila-Farré, M. et al. Evolutionary dynamics of whole-body regeneration across planarian flatworms. Nat. Ecol. Evol. 1–17 (2023) https://doi.org/10.1038/s41559-023-02221-7 .
Rozanski, A. et al. PlanMine 3.0—improvements to a mineable resource of flatworm biology and biodiversity. Nucleic Acids Res. 47, D812–D820 (2019).
pubmed: 30496475 doi: 10.1093/nar/gky1070
Lakshmanan, V. et al. Genome-wide analysis of polyadenylation events in Schmidtea mediterranea. G3 GenesGenomesGenetics 6, 3035–3048 (2016).
doi: 10.1534/g3.116.031120
Blythe, M. J. et al. A dual platform approach to transcript discovery for the planarian Schmidtea mediterranea to establish RNAseq for stem cell and regeneration biology. PLOS ONE 5, e15617 (2010).
pubmed: 21179477 pmcid: 3001875 doi: 10.1371/journal.pone.0015617
García-Castro, H. et al. ACME dissociation: a versatile cell fixation-dissociation method for single-cell transcriptomics. Genome Biol. 22, 89 (2021).
pubmed: 33827654 pmcid: 8028764 doi: 10.1186/s13059-021-02302-5
Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).
pubmed: 28846090 pmcid: 5623106 doi: 10.1038/nmeth.4396
Yan, F., Powell, D. R., Curtis, D. J. & Wong, N. C. From reads to insight: a hitchhiker’s guide to ATAC-seq data analysis. Genome Biol. 21, 22 (2020).
pubmed: 32014034 pmcid: 6996192 doi: 10.1186/s13059-020-1929-3
Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286 (2014).
pubmed: 24614317 doi: 10.1038/nrg3682
Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411 (2002).
pubmed: 12353038 doi: 10.1038/nature01080
Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. 107, 21931–21936 (2010).
pubmed: 21106759 pmcid: 3003124 doi: 10.1073/pnas.1016071107
Visel, A., Bristow, J. & Pennacchio, L. A. Enhancer identification through comparative genomics. Semin. Cell Dev. Biol. 18, 140–152 (2007).
pubmed: 17276707 pmcid: 1855162 doi: 10.1016/j.semcdb.2006.12.014
Egger, B. et al. A Transcriptomic-Phylogenomic analysis of the evolutionary relationships of flatworms. Curr. Biol. 25, 1347–1353 (2015).
pubmed: 25866392 pmcid: 4446793 doi: 10.1016/j.cub.2015.03.034
Laumer, C. E., Hejnol, A. & Giribet, G. Nuclear genomic signals of the ‘microturbellarian’ roots of Platyhelminth evolutionary innovation. eLife 4, e05503 (2015).
pubmed: 25764302 pmcid: 4398949 doi: 10.7554/eLife.05503
Martín-Durán, J. M., Ryan, J. F., Vellutini, B. C., Pang, K. & Hejnol, A. Increased taxon sampling reveals thousands of hidden orthologs in flatworms. Genome Res. 27, 1263–1272 (2017).
pubmed: 28400424 pmcid: 5495077 doi: 10.1101/gr.216226.116
Brand, J. N., Viktorin, G., Wiberg, R. A. W., Beisel, C. & Schärer, L. Large-scale phylogenomics of the genus Macrostomum (Platyhelminthes) reveals cryptic diversity and novel sexual traits. Mol. Phylogenet. Evol. 166, 107296 (2022).
pubmed: 34438051 doi: 10.1016/j.ympev.2021.107296
Benazzi, M., Puccinelli, I. & Papa, R. D. The planarians of the Dugesia lugubris-polychroa group: taxonomic inferences based on cytogenetic and morphologic data. Accad. Natl Dei Lincei Ser. VIII 48, 369–376 (1970).
Benazzi, M., Baguná, J., Ballester, R., Puccinelli, I. & Papa, R. D. Further contribution to the taxonomy of the «Dugesia lugubris-polychroa Group» with description of Dugesia mediterranea n.sp. (tricladida, paludicola). Bolletino Zool. 42, 81–89 (1975).
doi: 10.1080/11250007509430132
Benazzi, M. & Puccinelli, I. A Robertsonian translocation in the fresh-water triclad Dugesia lugubris: Karyometric analysis and evolutionary inferences. Chromosoma 40, 193–198 (1972).
doi: 10.1007/BF00321464
Leria, L., Sluys, R. & Riutort, M. Diversification and biogeographic history of the Western Palearctic freshwater flatworm genus Schmidtea (Tricladida: Dugesiidae), with a redescription of Schmidtea nova. J. Zool. Syst. Evol. Res. 56, 335–351 (2018).
doi: 10.1111/jzs.12214
Kirilenko, B. M. et al. Integrating gene annotation with orthology inference at scale. Science 380, eabn3107 (2023).
pubmed: 37104600 pmcid: 10193443 doi: 10.1126/science.abn3107
Cebrià, F. et al. FGFR-related gene nou-darake restricts brain tissues to the head region of planarians. Nature 419, 620–624 (2002).
pubmed: 12374980 doi: 10.1038/nature01042
Gurley, K. A., Rink, J. C. & Alvarado, A. S. β-Catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319, 323–327 (2008).
pubmed: 18063757 doi: 10.1126/science.1150029
Lovell, J. T. et al. GENESPACE tracks regions of interest and gene copy number variation across multiple genomes. eLife 11, e78526 (2022).
pubmed: 36083267 pmcid: 9462846 doi: 10.7554/eLife.78526
Startek, M. et al. Genome-wide analyses of LINE–LINE-mediated nonallelic homologous recombination. Nucleic Acids Res. 43, 2188–2198 (2015).
pubmed: 25613453 pmcid: 4344489 doi: 10.1093/nar/gku1394
Nowotarski, S. H. et al. Planarian Anatomy Ontology: a resource to connect data within and across experimental platforms. Development 148, dev196097 (2021).
Davies, E. L. et al. Embryonic origin of adult stem cells required for tissue homeostasis and regeneration. eLife 6, 4756–4769 (2017).
Fincher, C. T., Wurtzel, O., de Hoog, T., Kravarik, K. M. & Reddien, P. W. Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science 360, eaaq1736 (2018).
pubmed: 29674431 pmcid: 6563842 doi: 10.1126/science.aaq1736
Plass, M. et al. Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science 360, eaaq1723 (2018).
Baguñà, J. et al. From morphology and karyology to molecules. New methods for taxonomical identification of asexual populations of freshwater planarians. A tribute to Professor Mario Benazzi. Ital. J. Zool. 66, 207–214 (1999).
doi: 10.1080/11250009909356258
Hill, J. et al. Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of Lepidopteran chromosome evolution. Sci. Adv. 5, eaau3648 (2019).
pubmed: 31206013 pmcid: 6561736 doi: 10.1126/sciadv.aau3648
Hofstatter, P. G. et al. Repeat-based holocentromeres influence genome architecture and karyotype evolution. Cell 185, 3153–3168.e18 (2022).
pubmed: 35926507 doi: 10.1016/j.cell.2022.06.045
Tsai, I. J. et al. The genomes of four tapeworm species reveal adaptations to parasitism. Nature 496, 57–63 (2013).
pubmed: 23485966 pmcid: 3964345 doi: 10.1038/nature12031
The Evolution of Parasitism: A Phylogenetic Perspective. (Academic Press, San Diego, 2003).
Coghlan, A. et al. Comparative genomics of the major parasitic worms. Nat. Genet. 51, 163–174 (2019).
doi: 10.1038/s41588-018-0262-1
Simakov, O. et al. Deeply conserved synteny resolves early events in vertebrate evolution. Nat. Ecol. Evol. 4, 820–830 (2020).
pubmed: 32313176 pmcid: 7269912 doi: 10.1038/s41559-020-1156-z
Zimmermann, B. et al. Topological structures and syntenic conservation in sea anemone genomes. Nat. Commun. 14, 8270 (2023).
pubmed: 38092765 pmcid: 10719294 doi: 10.1038/s41467-023-44080-7
Liao, I. J.-Y., Lu, T.-M., Chen, M.-E. & Luo, Y.-J. Spiralian genomics and the evolution of animal genome architecture. Brief. Funct. Genomics elad029 (2023) https://doi.org/10.1093/bfgp/elad029 .
Sawh, A. N. & Mango, S. E. Chromosome organization in 4D: insights from C. elegans development. Curr. Opin. Genet. Dev. 75, 101939 (2022).
pubmed: 35759905 doi: 10.1016/j.gde.2022.101939
Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523, 240–244 (2015).
pubmed: 26030525 pmcid: 4498965 doi: 10.1038/nature14450
Plessy, C. et al. Extreme Genome Scrambling in Cryptic Oikopleura Dioica Species. (2023) https://doi.org/10.1101/2023.05.09.539028 .
Salvetti, A. et al. Adult stem cell plasticity: Neoblast repopulation in non-lethally irradiated planarians. Dev. Biol. 328, 305–314 (2009).
pubmed: 19389358 doi: 10.1016/j.ydbio.2009.01.029
De Mulder, K. et al. Potential of Macrostomum lignano to recover from γ-ray irradiation. Cell Tissue Res 339, 527–542 (2010).
pubmed: 20127258 pmcid: 2831187 doi: 10.1007/s00441-009-0915-6
Collins III, J. J. et al. Adult somatic stem cells in the human parasite Schistosoma mansoni. Nature 494, 476–479 (2013).
doi: 10.1038/nature11924
Koziol, U., Rauschendorfer, T., Zanon Rodríguez, L., Krohne, G. & Brehm, K. The unique stem cell system of the immortal larva of the human parasite Echinococcus multilocularis. EvoDevo 5, 10 (2014).
pubmed: 24602211 pmcid: 4015340 doi: 10.1186/2041-9139-5-10
Richardson, C. & Jasin, M. Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Mol. Cell. Biol. 20, 9068–9075 (2000).
pubmed: 11074004 pmcid: 86559 doi: 10.1128/MCB.20.23.9068-9075.2000
Boboila, C. et al. Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70. Proc. Natl Acad. Sci. USA. 107, 3034–3039 (2010).
pubmed: 20133803 pmcid: 2840344 doi: 10.1073/pnas.0915067107
Ramsden, D. A. & Nussenzweig, A. Mechanisms driving chromosomal translocations: Lost in time and space. Oncogene 40, 4263–4270 (2021).
pubmed: 34103687 pmcid: 8238880 doi: 10.1038/s41388-021-01856-9
Howe, J., Rink, J. C., Wang, B. & Griffin, A. S. Multicellularity in animals: The potential for within-organism conflict. Proc. Natl Acad. Sci. 119, e2120457119 (2022).
pubmed: 35862435 pmcid: 9371690 doi: 10.1073/pnas.2120457119
Merryman, M. S., Alvarado, A. S. & Jenkin, J. C. Culturing planarians in the laboratory. in Planarian regeneration: Methods and protocols 241–258 (Springer New York, New York, NY, 2018).
Cohen, S. S. & Lichtenstein, J. The isolation of deoxyribonucleic acid from bacterial extracts by precipitation with streptomycin. J. Biol. Chem. 235, PC55–PC56 (1960).
pubmed: 13694444 doi: 10.1016/S0021-9258(20)81364-7
Oxenburgh, M. S. & Snoswell, A. M. Use of Streptomycin in the Separation of Nucleic Acids from Protein in a Bacterial Extract. Nature 207, 1416–1417 (1965).
pubmed: 5886058 doi: 10.1038/2071416a0
Deguchi, T., Ishi, A. & Tanaka, M. Binding of aminoglycoside antibiotics to acidic mucopolysaccharides. J. Antibiot. 31, 150–155 (1978)..
Lis, J. T. & Schleif, R. Size fractionation of double-stranded DNA by precipitation with polyethylene glycol. Nucleic Acids Res. 2, 383–389 (1975).
pubmed: 236548 pmcid: 342844 doi: 10.1093/nar/2.3.383
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).
pubmed: 33526886 pmcid: 7961889 doi: 10.1038/s41592-020-01056-5
Ghurye, J., Pop, M., Koren, S., Bickhart, D. & Chin, C.-S. Scaffolding of long read assemblies using long range contact information. BMC Genomics 18, 527 (2017).
pubmed: 28701198 pmcid: 5508778 doi: 10.1186/s12864-017-3879-z
Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021).
pubmed: 34623391 pmcid: 8652018 doi: 10.1093/bioinformatics/btab705
Goel, M., Sun, H., Jiao, W.-B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 20, 277 (2019).
pubmed: 31842948 pmcid: 6913012 doi: 10.1186/s13059-019-1911-0
Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36, 983–987 (2018).
pubmed: 30247488 doi: 10.1038/nbt.4235
Ou, S. et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20, 275 (2019).
pubmed: 31843001 pmcid: 6913007 doi: 10.1186/s13059-019-1905-y
Neumann, P., Novák, P., Hoštáková, N. & Macas, J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob. DNA 10, 1 (2019).
pubmed: 30622655 pmcid: 6317226 doi: 10.1186/s13100-018-0144-1
Novák, P., Neumann, P. & Macas, J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat. Protoc. 15, 3745–3776 (2020).
pubmed: 33097925 doi: 10.1038/s41596-020-0400-y
Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
pubmed: 22543367 pmcid: 3371832 doi: 10.1093/bioinformatics/bts199
Zhang, Y., Chu, J., Cheng, H. & Li, H. De novo reconstruction of satellite repeat units from sequence data. ArXiv arXiv:2304.09729v1 (2023).
Kokot, M., Długosz, M. & Deorowicz, S. KMC 3: counting and manipulating k -mer statistics. Bioinformatics 33, 2759–2761 (2017).
pubmed: 28472236 doi: 10.1093/bioinformatics/btx304
Liu, S.-Y. & Rink, J. C. Total RNA Isolation from Planarian Tissues. 1774 (Humana Press, New York, NY, 2018).
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
pubmed: 31375807 pmcid: 7605509 doi: 10.1038/s41587-019-0201-4
Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 20, 278 (2019).
pubmed: 31842956 pmcid: 6912988 doi: 10.1186/s13059-019-1910-1
Tang, A. D. et al. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat. Commun. 11, 1438 (2020).
pubmed: 32188845 pmcid: 7080807 doi: 10.1038/s41467-020-15171-6
Gleeson, J. et al. Accurate expression quantification from nanopore direct RNA sequencing with NanoCount. Nucleic Acids Res 50, e19 (2022).
pubmed: 34850115 doi: 10.1093/nar/gkab1129
Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: A method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015).
pubmed: 25559105 doi: 10.1002/0471142727.mb2129s109
Zhang, Y. et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982 pmcid: 2592715 doi: 10.1186/gb-2008-9-9-r137
Crusoe, M. R. et al. The khmer software package: enabling efficient nucleotide sequence analysis. F1000Res. 4, 900 (2015).
Yu, G., Wang, L.-G. & He, Q.-Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).
pubmed: 25765347 doi: 10.1093/bioinformatics/btv145
Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44, W160–W165 (2016).
pubmed: 27079975 pmcid: 4987876 doi: 10.1093/nar/gkw257
Kurtenbach, S. & Harbour, J. W. SparK: A publication-quality NGS visualization tool. Preprint at https://doi.org/10.1101/845529 (2019).
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Ou, J. et al. ATACseqQC: a Bioconductor package for post-alignment quality assessment of ATAC-seq data. BMC Genomics 19, 169 (2018).
pubmed: 29490630 pmcid: 5831847 doi: 10.1186/s12864-018-4559-3
Newell, R. et al. ChIP-R: Assembling reproducible sets of ChIP-seq and ATAC-seq peaks from multiple replicates. Genomics 113, 1855–1866 (2021).
pubmed: 33878366 doi: 10.1016/j.ygeno.2021.04.026
Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).
pubmed: 31727128 pmcid: 6857279 doi: 10.1186/s13059-019-1832-y
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
pubmed: 23329690 pmcid: 3603318 doi: 10.1093/molbev/mst010
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Haeseler, Avon & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
pubmed: 28481363 pmcid: 5453245 doi: 10.1038/nmeth.4285
Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
pubmed: 32011700 pmcid: 7182206 doi: 10.1093/molbev/msaa015
Armstrong, J. et al. Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature 587, 246–251 (2020).
pubmed: 33177663 pmcid: 7673649 doi: 10.1038/s41586-020-2871-y
Zhang, X., Kaplow, I. M., Wirthlin, M., Park, T. Y. & Pfenning, A. R. HALPER facilitates the identification of regulatory element orthologs across species. Bioinformatics 36, 4339–4340 (2020).
pubmed: 32407523 pmcid: 7520040 doi: 10.1093/bioinformatics/btaa493
Hickey, G., Paten, B., Earl, D., Zerbino, D. & Haussler, D. HAL: a hierarchical format for storing and analyzing multiple genome alignments. Bioinformatics 29, 1341–1342 (2013).
pubmed: 23505295 pmcid: 3654707 doi: 10.1093/bioinformatics/btt128
Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).
pubmed: 22217600 pmcid: 3326336 doi: 10.1093/nar/gkr1293
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
pubmed: 26059717 doi: 10.1093/bioinformatics/btv351

Auteurs

Mario Ivanković (M)

Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.

Jeremias N Brand (JN)

Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.

Luca Pandolfini (L)

Center for Human Technologies, Non-coding RNA and RNA-based therapeutics, Istituto Italiano di Tecnologia, Genova, Italy.

Thomas Brown (T)

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.

Martin Pippel (M)

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.

Andrei Rozanski (A)

Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.

Til Schubert (T)

Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.

Markus A Grohme (MA)

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.

Sylke Winkler (S)

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.

Laura Robledillo (L)

Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.

Meng Zhang (M)

Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.

Azzurra Codino (A)

Center for Human Technologies, Non-coding RNA and RNA-based therapeutics, Istituto Italiano di Tecnologia, Genova, Italy.

Stefano Gustincich (S)

Center for Human Technologies, Non-coding RNA and RNA-based therapeutics, Istituto Italiano di Tecnologia, Genova, Italy.

Miquel Vila-Farré (M)

Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.

Shu Zhang (S)

Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.

Argyris Papantonis (A)

Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.

André Marques (A)

Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.

Jochen C Rink (JC)

Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany. jochen.rink@mpinat.mpg.de.
Faculty of Biology und Psychology, Georg-August-University Göttingen, Göttingen, Germany. jochen.rink@mpinat.mpg.de.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH