Short-term efficacy of photobiomodulation in early and intermediate age-related macular degeneration: the PBM4AMD study.
Journal
Eye (London, England)
ISSN: 1476-5454
Titre abrégé: Eye (Lond)
Pays: England
ID NLM: 8703986
Informations de publication
Date de publication:
14 Sep 2024
14 Sep 2024
Historique:
received:
14
12
2023
accepted:
04
09
2024
revised:
08
08
2024
pubmed:
15
9
2024
medline:
15
9
2024
entrez:
14
9
2024
Statut:
aheadofprint
Résumé
This independent prospective study evaluated the short-term effects and safety of photobiomodulation (PBM) in early and intermediate age-related macular degeneration. patients were treated with PBM in one eye. Functional parameters and drusen volume were measured at one (W4), three- (W12) and six-months (W24) after PBM. The study included 38 subjects who completed the PBM protocol. Two patients developed macular neovascularization during the study period. Best corrected visual acuity improved from 77.82 ± 5.83 ETDRS letters at baseline to 82.44 ± 5.67 at W12 (p < 0.01), then declined to 80.05 ± 5.79 at W24 (p < 0.01 vs. baseline). Low luminance visual acuity showed a similar pattern, improving from 61.18 ± 8.58 ETDRS letters at baseline to 66.33 ± 8.55 at W12 (p < 0.01), and decreasing to 62.05 ± 9.71 at W24 (p = 0.02). Contrast sensitivity improved at W12 (20.11 ± 9.23 ETDRS letters, p < 0.01), but returned to baseline by W24 (16.45 ± 9.12, p = 0.5). Scotopic microperimetry showed a decrease in mean absolute retinal sensitivity from 9.24 ± 3.44 dB to 7.47 ± 4.41 dB at W24 (p < 0.01), while relative sensitivity decreased only at W24 (p = 0.04). Drusen volume decreased at W4 (0.018 ± 0.009 mm3, p < 0.01) and W12 (0.017 ± 0.009 mm3, p < 0.01), with a slight increase at W24 (0.019 ± 0.012 mm3, p = 0.154). PBM resulted in temporary improvements in visual function and a reduction in drusen volume, but these effects were not sustained at six months. The long-term efficacy and impact on disease progression are uncertain, necessitating further research to confirm these findings and determine optimal patient selection.
Identifiants
pubmed: 39277630
doi: 10.1038/s41433-024-03326-4
pii: 10.1038/s41433-024-03326-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Jonas JB, Cheung CMG, Panda-Jonas S. Updates on the epidemiology of age-related macular degeneration. Asia-Pac J Ophthalmol. 2017;6:493–7.
Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng C-Y, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2:e106–116.
doi: 10.1016/S2214-109X(13)70145-1
pubmed: 25104651
Apte RS. Age-related macular degeneration. N Engl J Med. 2021;385:539–47.
Salmon JF, Kanski JJ. Kanski’s clinical ophthalmology: a systematic approach, Ninth edition. Edinburgh: Elsevier; 2020.
Curcio CA, Millican CL. Basal linear deposit and large drusen are specific for early age-related maculopathy. Arch Ophthalmol Chic Ill 1960. 1999;117:329–39.
Heier JS, Lad EM, Holz FG, Rosenfeld PJ, Guymer RH, Boyer D, et al. Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): two multicentre, randomised, double-masked, sham-controlled, phase 3 trials. Lancet Lond Engl. 2023;402:1434–48.
doi: 10.1016/S0140-6736(23)01520-9
Kang C. Avacincaptad pegol: first approval. Drugs. 2023;83:1447–53.
doi: 10.1007/s40265-023-01948-8
pubmed: 37814173
Miller JW, Adamis AP, Shima DT, D’Amore PA, Moulton RS, O’Reilly MS, et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol. 1994;145:574–84.
pubmed: 7521577
pmcid: 1890317
Hamblin MR, Demidova TN Mechanisms of low level light therapy. In: Mechanisms for Low-Light Therapy.Vol 6140. SPIE; 2006. pp. 614001. Available at: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/6140/614001/Mechanisms-of-low-level-light-therapy/10.1117/12.646294.full [Accessed September 13, 2022].
Moro C, Valverde A, Dole M, Hoh Kam J, Hamilton C, Liebert A, et al. The effect of photobiomodulation on the brain during wakefulness and sleep. Front Neurosci. 2022;16:942536.
doi: 10.3389/fnins.2022.942536
pubmed: 35968381
pmcid: 9366035
Chintavalakorn R, Saengfai NN, Sipiyaruk K. The protocol of low-level laser therapy in orthodontic practice: a scoping review of literature. J Int Soc Prev Community Dent. 2022;12:267–86.
doi: 10.4103/jispcd.JISPCD_328_21
pubmed: 35966907
pmcid: 9369786
Gigo-Benato D, Geuna S, Rochkind S. Phototherapy for enhancing peripheral nerve repair: a review of the literature. Muscle Nerve. 2005;31:694–701.
doi: 10.1002/mus.20305
pubmed: 15742372
Simunovic Z, Ivankovich AD, Depolo A. Wound healing of animal and human body sport and traffic accident injuries using low-level laser therapy treatment: a randomized clinical study of seventy-four patients with control group. J Clin Laser Med Surg. 2000;18:67–73.
doi: 10.1089/clm.2000.18.67
pubmed: 11800105
Papageorgiou P, Katsambas A, Chu A. Phototherapy with blue (415 nm) and red (660 nm) light in the treatment of acne vulgaris. Br J Dermatol. 2000;142:973–8.
doi: 10.1046/j.1365-2133.2000.03481.x
pubmed: 10809858
Boyer D, Hu A, Warrow D, Xavier S, Gonzalez V, Lad E, et al. LIGHTSITE III: 13-month efficacy and safety evaluation of multiwavelength photobiomodulation in nonexudative (dry) age-related macular degeneration using the LumiThera Valeda Light Delivery System. Retina. 2024;44:487–97.
Merry GF, Munk MR, Dotson RS, Walker MG, Devenyi RG. Photobiomodulation reduces drusen volume and improves visual acuity and contrast sensitivity in dry age-related macular degeneration. Acta Ophthalmol (Copenh). 2017;95:e270–e277.
doi: 10.1111/aos.13354
Markowitz SN, Devenyi RG, Munk MR, Croissant CL, Tedford SE, Rückert R, et al. A double-masked, randomized, sham-controlled, single-center study with photobiomodulation for the treatment of dry agerelated macular degeneration. Retin Philos Pa. 2020;40:1471–82.
Benlahbib M, Cohen SY, Torrell N, Colantuono D, Crincoli E, Amoroso F, et al. Photobiomodulation therapy for large soft drusen and drusenoid pigment epithelial detachment in age-related macular degeneration: a single-center prospective pilot study. Retin Philos Pa. 2023;43:1246–54.
Burton B, Parodi MB, Jürgens I, Zanlonghi X, Hornan D, Roider J, et al. LIGHTSITE II randomized multicenter trial: evaluation of multiwavelength photobiomodulation in non-exudative age-related macular degeneration. Ophthalmol Ther. 2023;12:953–68.
doi: 10.1007/s40123-022-00640-6
pubmed: 36588113
pmcid: 9805913
Coleman HR, Chan C-C, Ferris FL, Chew EY. Age-related macular degeneration. Lancet Lond Engl. 2008;372:1835–45.
doi: 10.1016/S0140-6736(08)61759-6
Wood LJ, Jolly JK, Buckley TM, Josan AS, MacLaren RE. Low luminance visual acuity as a clinical measure and clinical trial outcome measure: a scoping review. Ophthalmic Physiol Opt J Br Coll Ophthalmic Opt Optom. 2021;41:213–23.
doi: 10.1111/opo.12775
Nassisi M, Lei J, Abdelfattah NS, Karamat A, Balasubramanian S, Fan W, et al. OCT risk factors for development of late age-related macular degeneration in the fellow eyes of patients enrolled in the HARBOR study. Ophthalmology 2019;126:1667–74.
doi: 10.1016/j.ophtha.2019.05.016
pubmed: 31281056
Corvi F, Pellegrini M, Belotti M, Bianchi C, Staurenghi G. Scotopic and fast mesopic microperimetry in eyes with drusen and reticular pseudodrusen. Retin Philos Pa. 2019;39:2378–83.
Wang Y, Wang M, Zhang X, Zhang Q, Nie J, Zhang M, et al. The association between the lipids levels in blood and risk of age-related macular degeneration. Nutrients. 2016;8:663.
doi: 10.3390/nu8100663
pubmed: 27782072
pmcid: 5084049