Immunotherapy for ovarian cancer: towards a tailored immunophenotype-based approach.
Journal
Nature reviews. Clinical oncology
ISSN: 1759-4782
Titre abrégé: Nat Rev Clin Oncol
Pays: England
ID NLM: 101500077
Informations de publication
Date de publication:
04 Sep 2024
04 Sep 2024
Historique:
accepted:
12
08
2024
medline:
5
9
2024
pubmed:
5
9
2024
entrez:
4
9
2024
Statut:
aheadofprint
Résumé
Despite documented evidence that ovarian cancer cells express immune-checkpoint molecules, such as PD-1 and PD-L1, and of a positive correlation between the presence of tumour-infiltrating lymphocytes and favourable overall survival outcomes in patients with this tumour type, the results of trials testing immune-checkpoint inhibitors (ICIs) in these patients thus far have been disappointing. The lack of response to ICIs can be attributed to tumour heterogeneity as well as inherent or acquired resistance associated with the tumour microenvironment (TME). Understanding tumour immunobiology, discovering biomarkers for patient selection and establishing optimal treatment combinations remains the hope but also a key challenge for the future application of immunotherapy in ovarian cancer. In this Review, we summarize results from trials testing ICIs in patients with ovarian cancer. We propose the implementation of a systematic CD8
Identifiants
pubmed: 39232212
doi: 10.1038/s41571-024-00937-4
pii: 10.1038/s41571-024-00937-4
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. Springer Nature Limited.
Références
Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).
pubmed: 35020204
doi: 10.3322/caac.21708
Webb, P. M. & Jordan, S. J. Global epidemiology of epithelial ovarian cancer. Nat. Rev. Clin. Oncol. 21, 389–400 (2024).
pubmed: 38548868
doi: 10.1038/s41571-024-00881-3
Lheureux, S., Gourley, C., Vergote, I. & Oza, A. M. Epithelial ovarian cancer. Lancet 393, 1240–1253 (2019).
pubmed: 30910306
doi: 10.1016/S0140-6736(18)32552-2
Clair, K. H., Wolford, J., Zell, J. A. & Bristow, R. E. Surgical management of gynecologic cancers. Surg. Oncol. Clin. N. Am. 30, 69–88 (2021).
pubmed: 33220810
doi: 10.1016/j.soc.2020.09.004
Ledermann, J. A. et al. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, iv259 (2018).
pubmed: 30285216
doi: 10.1093/annonc/mdy157
Coleridge, S. L., Bryant, A., Kehoe, S. & Morrison, J. Neoadjuvant chemotherapy before surgery versus surgery followed by chemotherapy for initial treatment in advanced ovarian epithelial cancer. Cochrane Database Syst. Rev. 7, CD005343 (2021).
pubmed: 34328210
Moore, K. et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 379, 2495–2505 (2018).
pubmed: 30345884
doi: 10.1056/NEJMoa1810858
Perren, T. J. et al. A phase 3 trial of bevacizumab in ovarian cancer. N. Engl. J. Med. 365, 2484–2496 (2011).
pubmed: 22204725
doi: 10.1056/NEJMoa1103799
Ray-Coquard, I. et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N. Engl. J. Med. 381, 2416–2428 (2019).
pubmed: 31851799
doi: 10.1056/NEJMoa1911361
Narod, S. Can advanced-stage ovarian cancer be cured? Nat. Rev. Clin. Oncol. 13, 255–261 (2016).
pubmed: 26787282
doi: 10.1038/nrclinonc.2015.224
Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).
pubmed: 29567705
pmcid: 7391259
doi: 10.1126/science.aar4060
Makker, V. et al. Lenvatinib plus pembrolizumab for advanced endometrial cancer. N. Engl. J. Med. 386, 437–448 (2022).
pubmed: 35045221
doi: 10.1056/NEJMoa2108330
Colombo, N. et al. Pembrolizumab for persistent, recurrent, or metastatic cervical cancer. N. Engl. J. Med. 385, 1856–1867 (2021).
pubmed: 34534429
doi: 10.1056/NEJMoa2112435
Cancer Genome Atlas Research Network Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).
doi: 10.1038/nature10166
Konecny, G. E. et al. Prognostic and therapeutic relevance of molecular subtypes in high-grade serous ovarian cancer. J. Natl Cancer Inst. 106, dju249 (2014).
pubmed: 25269487
pmcid: 4271115
doi: 10.1093/jnci/dju249
Tothill, R. W. et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin. Cancer Res. 14, 5198–5208 (2008).
pubmed: 18698038
doi: 10.1158/1078-0432.CCR-08-0196
Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348, 203–213 (2003).
pubmed: 12529460
doi: 10.1056/NEJMoa020177
Adams, S. F. et al. Intraepithelial T cells and tumor proliferation: impact on the benefit from surgical cytoreduction in advanced serous ovarian cancer. Cancer 115, 2891–2902 (2009).
pubmed: 19472394
doi: 10.1002/cncr.24317
Hao, J., Yu, H., Zhang, T., An, R. & Xue, Y. Prognostic impact of tumor-infiltrating lymphocytes in high grade serous ovarian cancer: a systematic review and meta-analysis. Ther. Adv. Med. Oncol. 12, 1758835920967241 (2020).
pubmed: 33193829
pmcid: 7607723
doi: 10.1177/1758835920967241
Ovarian Tumor Tissue Analysis, C. et al. Dose-response association of CD8
doi: 10.1001/jamaoncol.2017.3290
Sato, E. et al. Intraepithelial CD8
pubmed: 16344461
pmcid: 1311741
doi: 10.1073/pnas.0509182102
Bobisse, S. et al. Sensitive and frequent identification of high avidity neo-epitope specific CD8
pubmed: 29545564
pmcid: 5854609
doi: 10.1038/s41467-018-03301-0
Anadon, C. M. et al. Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells. Cancer Cell 40, 545–557.e13 (2022).
pubmed: 35427494
pmcid: 9096229
doi: 10.1016/j.ccell.2022.03.008
Duraiswamy, J. et al. Myeloid antigen-presenting cell niches sustain antitumor T cells and license PD-1 blockade via CD28 costimulation. Cancer Cell 39, 1623–1642.e20 (2021).
pubmed: 34739845
pmcid: 8861565
doi: 10.1016/j.ccell.2021.10.008
Strickland, K. C. et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 7, 13587–13598 (2016).
pubmed: 26871470
pmcid: 4924663
doi: 10.18632/oncotarget.7277
Bruand, M. et al. Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Rep. 36, 109412 (2021).
pubmed: 34289354
pmcid: 8371260
doi: 10.1016/j.celrep.2021.109412
Hamanishi, J. et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J. Clin. Oncol. 33, 4015–4022 (2015).
pubmed: 26351349
doi: 10.1200/JCO.2015.62.3397
Hamanishi, J. et al. Nivolumab versus gemcitabine or pegylated liposomal doxorubicin for patients with platinum-resistant ovarian cancer: open-label, randomized trial in Japan (NINJA). J. Clin. Oncol. 39, 3671–3681 (2021).
pubmed: 34473544
pmcid: 8601279
doi: 10.1200/JCO.21.00334
Varga, A. et al. Pembrolizumab in patients with programmed death ligand 1-positive advanced ovarian cancer: analysis of KEYNOTE-028. Gynecol. Oncol. 152, 243–250 (2019).
pubmed: 30522700
doi: 10.1016/j.ygyno.2018.11.017
Matulonis, U. A. et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: results from the phase II KEYNOTE-100 study. Ann. Oncol. 30, 1080–1087 (2019).
pubmed: 31046082
doi: 10.1093/annonc/mdz135
Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).
pubmed: 22658128
pmcid: 3563263
doi: 10.1056/NEJMoa1200694
Liu, J. F. et al. Safety, clinical activity and biomarker assessments of atezolizumab from a phase I study in advanced/recurrent ovarian and uterine cancers. Gynecol. Oncol. 154, 314–322 (2019).
pubmed: 31204078
doi: 10.1016/j.ygyno.2019.05.021
Disis, M. L. et al. Efficacy and safety of avelumab for patients with recurrent or refractory ovarian cancer: phase 1b results from the JAVELIN solid tumor trial. JAMA Oncol. 5, 393–401 (2019).
pubmed: 30676622
pmcid: 6439837
doi: 10.1001/jamaoncol.2018.6258
Duraiswamy, J., Freeman, G. J. & Coukos, G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors – response. Cancer Res. 74, 633–634, discussion 635 (2014).
pubmed: 24408920
doi: 10.1158/0008-5472.CAN-13-2752
Hartl, C. A. et al. Combination therapy targeting both innate and adaptive immunity improves survival in a pre-clinical model of ovarian cancer. J. Immunother. Cancer 7, 199 (2019).
pubmed: 31362778
pmcid: 6668091
doi: 10.1186/s40425-019-0654-5
Pavicic, P. G. Jr et al. Immunotherapy with IL12 and PD1/CTLA4 inhibition is effective in advanced ovarian cancer and associates with reversal of myeloid cell-induced immunosuppression. Oncoimmunology 12, 2198185 (2023).
pubmed: 37066116
pmcid: 10101660
doi: 10.1080/2162402X.2023.2198185
Zamarin, D. et al. Randomized phase II trial of nivolumab versus nivolumab and ipilimumab for recurrent or persistent ovarian cancer: an NRG oncology study. J. Clin. Oncol. 38, 1814–1823 (2020).
pubmed: 32275468
pmcid: 7255977
doi: 10.1200/JCO.19.02059
Leary, A. et al. Phase Ib INEOV neoadjuvant trial of the anti-PDL1, durvalumab (D) +/− anti-CTLA4 tremelimumab (T) with platinum chemotherapy for patients (pts) with unresectable ovarian cancer (OC): A GINECO study [abstract 727P]. Ann. Oncol. 32 (Suppl. 5), S731 (2021).
doi: 10.1016/j.annonc.2021.08.1170
Leary, A. et al. Phase Ib INEOV neoadjuvant trial of durvalumab +/− tremelimumab with platinum chemotherapy for patients (pts) with unresectable ovarian cancer (OC): Final complete resection and pathological response rates [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 5557 (2022).
doi: 10.1200/JCO.2022.40.16_suppl.5557
Lo, C. S. et al. Neoadjuvant chemotherapy of ovarian cancer results in three patterns of tumor-infiltrating lymphocyte response with distinct implications for immunotherapy. Clin. Cancer Res. 23, 925–934 (2017).
pubmed: 27601594
doi: 10.1158/1078-0432.CCR-16-1433
Bohm, S. et al. Neoadjuvant chemotherapy modulates the immune microenvironment in metastases of tubo-ovarian high-grade serous carcinoma. Clin. Cancer Res. 22, 3025–3036 (2016).
pubmed: 27306793
doi: 10.1158/1078-0432.CCR-15-2657
Mesnage, S. J. L. et al. Neoadjuvant chemotherapy (NACT) increases immune infiltration and programmed death-ligand 1 (PD-L1) expression in epithelial ovarian cancer (EOC). Ann. Oncol. 28, 651–657 (2017).
pubmed: 27864219
doi: 10.1093/annonc/mdw625
Kim, H. S. et al. Expression of programmed cell death ligand 1 and immune checkpoint markers in residual tumors after neoadjuvant chemotherapy for advanced high-grade serous ovarian cancer. Gynecol. Oncol. 151, 414–421 (2018).
pubmed: 30314669
doi: 10.1016/j.ygyno.2018.08.023
Jimenez-Sanchez, A. et al. Unraveling tumor-immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy. Nat. Genet. 52, 582–593 (2020).
pubmed: 32483290
pmcid: 8353209
doi: 10.1038/s41588-020-0630-5
Peng, J. et al. Chemotherapy induces programmed cell death-ligand 1 overexpression via the nuclear factor-κB to foster an immunosuppressive tumor microenvironment in ovarian cancer. Cancer Res. 75, 5034–5045 (2015).
pubmed: 26573793
doi: 10.1158/0008-5472.CAN-14-3098
Ghaffari, A. et al. STING agonist therapy in combination with PD-1 immune checkpoint blockade enhances response to carboplatin chemotherapy in high-grade serous ovarian cancer. Br. J. Cancer 119, 440–449 (2018).
pubmed: 30046165
pmcid: 6133940
doi: 10.1038/s41416-018-0188-5
Liu, M. et al. Improved T-cell immunity following neoadjuvant chemotherapy in ovarian cancer. Clin. Cancer Res. 28, 3356–3366 (2022).
pubmed: 35443043
pmcid: 9357177
doi: 10.1158/1078-0432.CCR-21-2834
Zhang, Y. et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell 39, 1578–1593.e8 (2021).
pubmed: 34653365
doi: 10.1016/j.ccell.2021.09.010
Socinski, M. A. et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378, 2288–2301 (2018).
pubmed: 29863955
doi: 10.1056/NEJMoa1716948
Sordo-Bahamonde, C. et al. Chemo-immunotherapy: a new trend in cancer treatment. Cancers 15(11), 2912 (2023).
pubmed: 37296876
pmcid: 10252089
doi: 10.3390/cancers15112912
Fucikova, J. et al. Immunological control of ovarian carcinoma by chemotherapy and targeted anticancer agents. Trends Cancer 8, 426–444 (2022).
pubmed: 35181272
doi: 10.1016/j.trecan.2022.01.010
Monk, B. J. et al. Chemotherapy with or without avelumab followed by avelumab maintenance versus chemotherapy alone in patients with previously untreated epithelial ovarian cancer (JAVELIN Ovarian 100): an open-label, randomised, phase 3 trial. Lancet Oncol. 22, 1275–1289 (2021).
pubmed: 34363762
doi: 10.1016/S1470-2045(21)00342-9
Pujade-Lauraine, E. et al. Avelumab alone or in combination with chemotherapy versus chemotherapy alone in platinum-resistant or platinum-refractory ovarian cancer (JAVELIN Ovarian 200): an open-label, three-arm, randomised, phase 3 study. Lancet Oncol. 22, 1034–1046 (2021).
pubmed: 34143970
doi: 10.1016/S1470-2045(21)00216-3
Lee, E. K. et al. Combined pembrolizumab and pegylated liposomal doxorubicin in platinum resistant ovarian cancer: a phase 2 clinical trial. Gynecol. Oncol. 159, 72–78 (2020).
pubmed: 32771276
doi: 10.1016/j.ygyno.2020.07.028
Moore, K. N. et al. Atezolizumab, bevacizumab, and chemotherapy for newly diagnosed stage III or IV ovarian cancer: placebo-controlled randomized phase III trial (IMagyn050/GOG 3015/ENGOT-OV39). J. Clin. Oncol. 39, 1842–1855 (2021).
pubmed: 33891472
pmcid: 8189598
doi: 10.1200/JCO.21.00306
Rahma, O. E. & Hodi, F. S. The intersection between tumor angiogenesis and immune suppression. Clin. Cancer Res. 25, 5449–5457 (2019).
pubmed: 30944124
doi: 10.1158/1078-0432.CCR-18-1543
Ruscito, I. et al. Characterisation of tumour microvessel density during progression of high-grade serous ovarian cancer: clinico-pathological impact (an OCTIPS Consortium study). Br. J. Cancer 119, 330–338 (2018).
pubmed: 29955134
pmcid: 6070919
doi: 10.1038/s41416-018-0157-z
Leary, A., Tan, D. & Ledermann, J. Immune checkpoint inhibitors in ovarian cancer: where do we stand? Ther. Adv. Med. Oncol. 13, 17588359211039899 (2021).
pubmed: 34422119
pmcid: 8377306
doi: 10.1177/17588359211039899
Motz, G. T. & Coukos, G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat. Rev. Immunol. 11, 702–711 (2011).
pubmed: 21941296
doi: 10.1038/nri3064
Motz, G. T. et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 20, 607–615 (2014).
pubmed: 24793239
pmcid: 4060245
doi: 10.1038/nm.3541
Liu, J. F. et al. Assessment of combined nivolumab and bevacizumab in relapsed ovarian cancer: a phase 2 clinical trial. JAMA Oncol. 5, 1731–1738 (2019).
pubmed: 31600397
pmcid: 6802049
doi: 10.1001/jamaoncol.2019.3343
Banerjee, S. et al. Principal results of the EORTC-1508 trial: a phase II randomised, multicentre study of bevacizumab vs atezolizumab and bevacizumab with acetylsalicylic acid or placebo in recurrent platinum-resistant ovarian, fallopian tube or primary peritoneal adenocarcinoma [abstract LBA32]. Ann. Oncol. 32 (Suppl. 5), S1308 (2021).
doi: 10.1016/j.annonc.2021.08.2109
Kurtz, J. E. et al. Atezolizumab combined with bevacizumab and platinum-based therapy for platinum-sensitive ovarian cancer: placebo-controlled randomized phase III ATALANTE/ENGOT-ov29 trial. J. Clin. Oncol. 41, 4768–4778 (2023).
pubmed: 37643382
pmcid: 10602539
doi: 10.1200/JCO.23.00529
Lee, J. M. et al. Safety and clinical activity of the programmed death-ligand 1 inhibitor durvalumab in combination with poly (ADP-ribose) polymerase inhibitor olaparib or vascular endothelial growth factor receptor 1-3 inhibitor cediranib in women’s cancers: a dose-escalation, phase I study. J. Clin. Oncol. 35, 2193–2202 (2017).
pubmed: 28471727
pmcid: 5493052
doi: 10.1200/JCO.2016.72.1340
Le, D. T. & Jaffee, E. M. Regulatory T-cell modulation using cyclophosphamide in vaccine approaches: a current perspective. Cancer Res. 72, 3439–3444 (2012).
pubmed: 22761338
pmcid: 3399042
doi: 10.1158/0008-5472.CAN-11-3912
Zsiros, E. et al. Efficacy and safety of pembrolizumab in combination with bevacizumab and oral metronomic cyclophosphamide in the treatment of recurrent ovarian cancer: a phase 2 nonrandomized clinical trial. JAMA Oncol. 7, 78–85 (2021).
pubmed: 33211063
doi: 10.1001/jamaoncol.2020.5945
Ruscito, I. et al. Incorporating PARP-inhibitors in primary and recurrent ovarian cancer: a meta-analysis of 12 phase II/III randomized controlled trials. Cancer Treat. Rev. 87, 102040 (2020).
pubmed: 32485510
doi: 10.1016/j.ctrv.2020.102040
Ding, L. et al. PARP inhibition elicits STING-dependent antitumor immunity in Brca1-deficient ovarian cancer. Cell Rep. 25, 2972–2980.e5 (2018).
pubmed: 30540933
pmcid: 6366450
doi: 10.1016/j.celrep.2018.11.054
Shen, J. et al. PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness. Cancer Res. 79, 311–319 (2019).
pubmed: 30482774
doi: 10.1158/0008-5472.CAN-18-1003
Luo, X. et al. Poly(ADP-ribosyl)ation of FOXP3 protein mediated by PARP-1 protein regulates the function of regulatory T cells. J. Biol. Chem. 290, 28675–28682 (2015).
pubmed: 26429911
pmcid: 4661383
doi: 10.1074/jbc.M115.661611
Musacchio, L. et al. Combining PARP inhibition and immune checkpoint blockade in ovarian cancer patients: a new perspective on the horizon? ESMO Open. 7, 100536 (2022).
pubmed: 35849879
pmcid: 9294238
doi: 10.1016/j.esmoop.2022.100536
Lee, E. K. & Konstantinopoulos, P. A. PARP inhibition and immune modulation: scientific rationale and perspectives for the treatment of gynecologic cancers. Ther. Adv. Med. Oncol. 12, 1758835920944116 (2020).
pubmed: 32782491
pmcid: 7383615
doi: 10.1177/1758835920944116
Drew, Y. et al. Olaparib plus durvalumab, with or without bevacizumab, as treatment in PARP inhibitor-naive platinum-sensitive relapsed ovarian cancer: a phase II multi-cohort study. Clin. Cancer Res. 30, 50–62 (2024).
pubmed: 37939124
doi: 10.1158/1078-0432.CCR-23-2249
Poveda, A. et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a final analysis of a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 22, 620–631 (2021).
pubmed: 33743851
doi: 10.1016/S1470-2045(21)00073-5
Konstantinopoulos, P. A. et al. Single-arm phases 1 and 2 trial of niraparib in combination with pembrolizumab in patients with recurrent platinum-resistant ovarian carcinoma. JAMA Oncol. 5, 1141–1149 (2019).
pubmed: 31194228
pmcid: 6567832
doi: 10.1001/jamaoncol.2019.1048
Farkkila, A. et al. Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. Nat. Commun. 11, 1459 (2020).
pubmed: 32193378
pmcid: 7081234
doi: 10.1038/s41467-020-15315-8
Capoluongo, E. D. et al. Alternative academic approaches for testing homologous recombination deficiency in ovarian cancer in the MITO16A/MaNGO-OV2 trial. ESMO Open. 7, 100585 (2022).
pubmed: 36156447
pmcid: 9512829
doi: 10.1016/j.esmoop.2022.100585
Lampert, E. J. et al. Combination of PARP inhibitor olaparib, and PD-L1 inhibitor durvalumab, in recurrent ovarian cancer: a proof-of-concept phase II study. Clin. Cancer Res. 26, 4268–4279 (2020).
pubmed: 32398324
pmcid: 7442720
doi: 10.1158/1078-0432.CCR-20-0056
González-Martin, A. et al. LBA37 - Atezolizumab (atezo) combined with platinum-based chemotherapy (CT) and maintenance niraparib for recurrent ovarian cancer (rOC) with a platinum-free interval (TFIp) >6 months: primary analysis of the double-blind placebo (pbo)-controlled ENGOT-Ov41/GEICO 69-O/ANITA phase III trial. Ann. Oncol. 34 (Suppl. 2), S1254–S1335 (2023).
Ledermann, J. A. et al. Molecular determinants of clinical outcomes of pembrolizumab in recurrent ovarian cancer: exploratory analysis of KEYNOTE-100. Gynecol. Oncol. 178, 119–129 (2023).
pubmed: 37862791
doi: 10.1016/j.ygyno.2023.09.012
Drew, Y. et al. Phase II study of olaparib (O) plus durvalumab (D) and bevacizumab (B) (MEDIOLA): initial results in patients (pts) with non-germline BRCA-mutated (non-gBRCAm) platinum sensitive relapsed (PSR) ovarian cancer (OC) [abstract 814MO]. Ann. Oncol. 31 (Suppl. 4), 615–616 (2020).
doi: 10.1016/j.annonc.2020.08.953
Banerjee, S. et al. Phase II study of olaparib plus durvalumab with or without bevacizumab (MEDIOLA): final analysis of overall survival in patients with non-germline BRCA-mutated platinum-sensitive relapsed ovarian cancer [abstract 529MO]. Ann. Oncol. 33 (Suppl. 7), 788–789 (2022).
doi: 10.1016/j.annonc.2022.07.657
Kim, Y. N. et al. Triplet maintenance therapy of olaparib, pembrolizumab and bevacizumab in women with BRCA wild-type, platinum-sensitive recurrent ovarian cancer: the multicenter, single-arm phase II study OPEB-01/APGOT-OV4. Nat. Commun. 14, 5476 (2023).
pubmed: 37673858
pmcid: 10482952
doi: 10.1038/s41467-023-40829-2
Harter, P. et al. Durvalumab with paclitaxel/carboplatin (PC) and bevacizumab (bev), followed by maintenance durvalumab, bev, and olaparib in patients (pts) with newly diagnosed advanced ovarian cancer (AOC) without a tumor BRCA1/2 mutation (non-tBRCAm): results from the randomized, placebo (pbo)-controlled phase III DUO-O trial [abstract]. J. Clin. Oncol. 41 (Suppl. 17), LBA5506 (2023).
doi: 10.1200/JCO.2023.41.17_suppl.LBA5506
Freyer, G. et al. Bevacizumab, olaparib, and durvalumab in patients with relapsed ovarian cancer: a phase II clinical trial from the GINECO group. Nat. Commun. 15, 1985 (2024).
pubmed: 38443333
pmcid: 10914754
doi: 10.1038/s41467-024-45974-w
Cunnea, P. et al. Spatial and temporal intra-tumoral heterogeneity in advanced HGSOC: implications for surgical and clinical outcomes. Cell Rep. Med. 4, 101055 (2023).
pubmed: 37220750
pmcid: 10313917
doi: 10.1016/j.xcrm.2023.101055
Prat, J. New insights into ovarian cancer pathology. Ann. Oncol. 23, X111–X117 (2012).
pubmed: 22987944
doi: 10.1093/annonc/mds300
Maxwell, M. B. et al. ARID1A suppresses R-loop-mediated STING-type I interferon pathway activation of anti-tumor immunity. Cell 187, 3390–3408.e19 (2024).
pubmed: 38754421
doi: 10.1016/j.cell.2024.04.025
Norquist, B. M. et al. Inherited mutations in women with ovarian carcinoma. JAMA Oncol. 2, 482–490 (2016).
pubmed: 26720728
pmcid: 4845939
doi: 10.1001/jamaoncol.2015.5495
Sia, T. Y. et al. Treatment of ovarian clear cell carcinoma with immune checkpoint blockade: a case series. Int. J. Gynecol. Cancer 32, 1017–1024 (2022).
pubmed: 35545291
pmcid: 9356988
doi: 10.1136/ijgc-2022-003430
Xiao, X., Melton, D. W. & Gourley, C. Mismatch repair deficiency in ovarian cancer – molecular characteristics and clinical implications. Gynecol. Oncol. 132, 506–512 (2014).
pubmed: 24333356
doi: 10.1016/j.ygyno.2013.12.003
Fraune, C. et al. High homogeneity of MMR deficiency in ovarian cancer. Gynecol. Oncol. 156, 669–675 (2020).
pubmed: 31924330
doi: 10.1016/j.ygyno.2019.12.031
Friedman, C. F. et al. Nivolumab for mismatch-repair-deficient or hypermutated gynecologic cancers: a phase 2 trial with biomarker analyses. Nat. Med. 30, 1330–1338 (2024).
pubmed: 38653864
pmcid: 11108776
doi: 10.1038/s41591-024-02942-7
[No authors listed] World’s first TIL therapy approved. Nat. Biotechnol. 42, 349 (2024).
doi: 10.1038/s41587-024-02195-2
Baker, D. J., Arany, Z., Baur, J. A., Epstein, J. A. & June, C. H. CAR T therapy beyond cancer: the evolution of a living drug. Nature 619, 707–715 (2023).
pubmed: 37495877
doi: 10.1038/s41586-023-06243-w
Hong, D. S. et al. Autologous T cell therapy for MAGE-A4
pubmed: 36624315
pmcid: 9873554
doi: 10.1038/s41591-022-02128-z
Kawai, A. et al. Results from phase I/II study of NY-ESO-1-specific TCR gene-transduced T cell therapy (TBI-1301, mipetresgene autoleucel) in patients with advanced synovial sarcoma. J. Clin. Oncol. 41, 11558 (2023).
doi: 10.1200/JCO.2023.41.16_suppl.11558
Monberg, T. J., Borch, T. H., Svane, I. M. & Donia, M. TIL therapy: facts and hopes. Clin. Cancer Res. 29, 3275–3283 (2023).
pubmed: 37058256
doi: 10.1158/1078-0432.CCR-22-2428
Aoki, Y. et al. Use of adoptive transfer of tumor-infiltrating lymphocytes alone or in combination with cisplatin-containing chemotherapy in patients with epithelial ovarian cancer. Cancer Res. 51, 1934–1939 (1991).
pubmed: 2004379
Fujita, K. et al. Prolonged disease-free period in patients with advanced epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytes. Clin. Cancer Res. 1, 501–507 (1995).
pubmed: 9816009
Pedersen, M. et al. Adoptive cell therapy with tumor-infiltrating lymphocytes in patients with metastatic ovarian cancer: a pilot study. Oncoimmunology 7, e1502905 (2018).
pubmed: 30524900
pmcid: 6279323
doi: 10.1080/2162402X.2018.1502905
Sarivalasis, A., Morotti, M., Mulvey, A., Imbimbo, M. & Coukos, G. Cell therapies in ovarian cancer. Ther. Adv. Med. Oncol. 13, 17588359211008399 (2021).
pubmed: 33995591
pmcid: 8072818
doi: 10.1177/17588359211008399
Verdegaal, E. M. E. et al. Timed adoptive T cell transfer during chemotherapy in patients with recurrent platinum-sensitive epithelial ovarian cancer. J. Immunother. Cancer 11, e007697 (2023).
pubmed: 37949617
pmcid: 10649798
doi: 10.1136/jitc-2023-007697
Morotti, M. et al. Promises and challenges of adoptive T-cell therapies for solid tumours. Br. J. Cancer 124, 1759–1776 (2021).
pubmed: 33782566
pmcid: 8144577
doi: 10.1038/s41416-021-01353-6
Gonzalez, T., Muminovic, M., Nano, O. & Vulfovich, M. Folate receptor alpha – a novel approach to cancer therapy. Int. J. Mol. Sci. 25, 1046 (2024).
pubmed: 38256120
pmcid: 11154542
doi: 10.3390/ijms25021046
Kershaw, M. H. et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 12, 6106–6115 (2006).
pubmed: 17062687
pmcid: 2154351
doi: 10.1158/1078-0432.CCR-06-1183
Kandalaft, L. E., Powell, D. J. Jr & Coukos, G. A phase I clinical trial of adoptive transfer of folate receptor-α redirected autologous T cells for recurrent ovarian cancer. J. Transl. Med. 10, 157 (2012).
pubmed: 22863016
pmcid: 3439340
doi: 10.1186/1479-5876-10-157
Daigre, J. et al. Preclinical evaluation of novel folate receptor 1-directed CAR T cells for ovarian cancer. Cancers 16, 333 (2024).
pubmed: 38254822
pmcid: 10813853
doi: 10.3390/cancers16020333
Adusumilli, P. S. et al. A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab. Cancer Discov. 11, 2748–2763 (2021).
pubmed: 34266984
pmcid: 8563385
doi: 10.1158/2159-8290.CD-21-0407
Hassan, R. et al. Mesothelin-targeting T cell receptor fusion construct cell therapy in refractory solid tumors: phase 1/2 trial interim results. Nat. Med. 29, 2099–2109 (2023).
pubmed: 37501016
pmcid: 10427427
doi: 10.1038/s41591-023-02452-y
Adusumilli, P. S. et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci. Transl. Med. 6, 261ra151 (2014).
pubmed: 25378643
pmcid: 4373413
doi: 10.1126/scitranslmed.3010162
Mackensen, A. et al. CLDN6-specific CAR-T cells plus amplifying RNA vaccine in relapsed or refractory solid tumors: the phase 1 BNT211-01 trial. Nat. Med. 29, 2844–2853 (2023).
pubmed: 37872225
pmcid: 10667102
doi: 10.1038/s41591-023-02612-0
Wu, J. W. Y. et al. T-cell receptor therapy in the treatment of ovarian cancer: a mini review. Front. Immunol. 12, 672502 (2021).
pubmed: 33927729
pmcid: 8076633
doi: 10.3389/fimmu.2021.672502
Gitto, S. B., Ihewulezi, C. J. N. & Powell, D. J. Jr Adoptive T cell therapy for ovarian cancer. Gynecol. Oncol. 186, 77–84 (2024).
pubmed: 38603955
doi: 10.1016/j.ygyno.2024.04.001
D’Angelo, S. P. et al. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 (c259)T cells in synovial sarcoma. Cancer Discov. 8, 944–957 (2018).
pubmed: 29891538
pmcid: 8092079
doi: 10.1158/2159-8290.CD-17-1417
Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011).
pubmed: 21282551
pmcid: 3068063
doi: 10.1200/JCO.2010.32.2537
Dhodapkar, K. M., Krasovsky, J., Williamson, B. & Dhodapkar, M. V. Antitumor monoclonal antibodies enhance cross-presentation of cellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. J. Exp. Med. 195, 125–133 (2002).
pubmed: 11781371
pmcid: 2196013
doi: 10.1084/jem.20011097
Gnjatic, S. et al. NY-ESO-1: review of an immunogenic tumor antigen. Adv. Cancer Res. 95, 1–30 (2006).
pubmed: 16860654
doi: 10.1016/S0065-230X(06)95001-5
Matsuzaki, J. et al. Tumor-infiltrating NY-ESO-1-specific CD8
pubmed: 20385810
pmcid: 2867907
doi: 10.1073/pnas.1003345107
Yarza, R. et al. Efficacy of T-cell receptor-based adoptive cell therapy in cutaneous melanoma: a meta-analysis. Oncologist 28, e406–e415 (2023).
pubmed: 37036865
pmcid: 10243774
doi: 10.1093/oncolo/oyad078
Meeuwsen, M. H. et al. Broadly applicable TCR-based therapy for multiple myeloma targeting the immunoglobulin J chain. J. Hematol. Oncol. 16, 16 (2023).
pubmed: 36850001
pmcid: 9969645
doi: 10.1186/s13045-023-01408-6
Szender, J. B. et al. NY-ESO-1 expression predicts an aggressive phenotype of ovarian cancer. Gynecol. Oncol. 145, 420–425 (2017).
pubmed: 28392127
pmcid: 5497581
doi: 10.1016/j.ygyno.2017.03.509
Kandalaft, L. E., Dangaj Laniti, D. & Coukos, G. Immunobiology of high-grade serous ovarian cancer: lessons for clinical translation. Nat. Rev. Cancer 22, 640–656 (2022).
pubmed: 36109621
doi: 10.1038/s41568-022-00503-z
Garsed, D. W. et al. The genomic and immune landscape of long-term survivors of high-grade serous ovarian cancer. Nat. Genet. 54, 1853–1864 (2022).
pubmed: 36456881
pmcid: 10478425
doi: 10.1038/s41588-022-01230-9
Larson, R. C. et al. Anti-TACI single and dual-targeting CAR T cells overcome BCMA antigen loss in multiple myeloma. Nat. Commun. 14, 7509 (2023).
pubmed: 37980341
pmcid: 10657357
doi: 10.1038/s41467-023-43416-7
Liu, Y. L. et al. BRCA mutations, homologous DNA repair deficiency, tumor mutational burden, and response to immune checkpoint inhibition in recurrent ovarian cancer. JCO Precis. Oncol. 4, https://doi.org/10.1200/PO.20.00069 (2020).
Doroshow, D. B. et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 18, 345–362 (2021).
pubmed: 33580222
doi: 10.1038/s41571-021-00473-5
Parvathareddy, S. K. et al. Differential expression of PD-L1 between primary and metastatic epithelial ovarian cancer and its clinico-pathological correlation. Sci. Rep. 11, 3750 (2021).
pubmed: 33580098
pmcid: 7881132
doi: 10.1038/s41598-021-83276-z
Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).
pubmed: 27079802
pmcid: 5381938
doi: 10.1038/nrc.2016.36
Abiko, K., Hamanishi, J., Matsumura, N. & Mandai, M. Dynamic host immunity and PD-L1/PD-1 blockade efficacy: developments after “IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer”. Br. J. Cancer 128, 461–467 (2023).
pubmed: 36068276
doi: 10.1038/s41416-022-01960-x
Webb, J. R., Milne, K., Kroeger, D. R. & Nelson, B. H. PD-L1 expression is associated with tumor-infiltrating T cells and favorable prognosis in high-grade serous ovarian cancer. Gynecol. Oncol. 141, 293–302 (2016).
pubmed: 26972336
doi: 10.1016/j.ygyno.2016.03.008
Garris, C. S. et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 49, 1148–1161.e7 (2018).
pubmed: 30552023
pmcid: 6301092
doi: 10.1016/j.immuni.2018.09.024
Dangaj, D. et al. Cooperation between constitutive and inducible chemokines enables T cell engraftment and immune attack in solid tumors. Cancer Cell 35, 885–900.e10 (2019).
pubmed: 31185212
pmcid: 6961655
doi: 10.1016/j.ccell.2019.05.004
Truxova, I. et al. Mature dendritic cells correlate with favorable immune infiltrate and improved prognosis in ovarian carcinoma patients. J. Immunother. Cancer 6, 139 (2018).
pubmed: 30526667
pmcid: 6288908
doi: 10.1186/s40425-018-0446-3
Conejo-Garcia, J. R., Biswas, S., Chaurio, R. & Rodriguez, P. C. Neglected no more: B cell-mediated anti-tumor immunity. Semin. Immunol. 65, 101707 (2023).
pubmed: 36527759
doi: 10.1016/j.smim.2022.101707
Biswas, S. et al. IgA transcytosis and antigen recognition govern ovarian cancer immunity. Nature 591, 464–470 (2021).
pubmed: 33536615
pmcid: 7969354
doi: 10.1038/s41586-020-03144-0
Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).
pubmed: 31942075
pmcid: 8762581
doi: 10.1038/s41586-019-1922-8
Bruno, T. C. New predictors for immunotherapy responses sharpen our view of the tumour microenvironment. Nature 577, 474–476 (2020).
pubmed: 31965091
pmcid: 7523515
doi: 10.1038/d41586-019-03943-0
Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).
pubmed: 31942071
doi: 10.1038/s41586-019-1914-8
Lu, H. et al. Tumor and local lymphoid tissue interaction determines prognosis in high-grade serous ovarian cancer. Cell Rep. Med. 4, 101092 (2023).
pubmed: 37348499
pmcid: 10394173
doi: 10.1016/j.xcrm.2023.101092
Nielsen, J. S. et al. CD20
pubmed: 22553348
doi: 10.1158/1078-0432.CCR-12-0234
Montfort, A. et al. A strong B-cell response is part of the immune landscape in human high-grade serous ovarian metastases. Clin. Cancer Res. 23, 250–262 (2017).
pubmed: 27354470
doi: 10.1158/1078-0432.CCR-16-0081
Sautes-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).
pubmed: 31092904
doi: 10.1038/s41568-019-0144-6
Kasikova, L. et al. Tertiary lymphoid structures and B cells determine clinically relevant T cell phenotypes in ovarian cancer. Nat. Commun. 15, 2528 (2024).
pubmed: 38514660
pmcid: 10957872
doi: 10.1038/s41467-024-46873-w
Hwang, W. T., Adams, S. F., Tahirovic, E., Hagemann, I. S. & Coukos, G. Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecol. Oncol. 124, 192–198 (2012).
pubmed: 22040834
doi: 10.1016/j.ygyno.2011.09.039
Li, X. et al. Automated tumor immunophenotyping predicts clinical benefit from anti-PD-L1 immunotherapy. J. Pathol. 263, 190–202 (2024).
pubmed: 38525811
doi: 10.1002/path.6274
Shen, J. et al. Inflamed immune phenotype predicts favorable clinical outcomes of immune checkpoint inhibitor therapy across multiple cancer types. J. Immunother. Cancer 12, e008339 (2024).
pubmed: 38355279
pmcid: 10868175
doi: 10.1136/jitc-2023-008339
Roller, A. et al. Tumor-agnostic transcriptome-based classifier identifies spatial infiltration patterns of CD8
pubmed: 38649280
pmcid: 11043740
doi: 10.1136/jitc-2023-008185
Hornburg, M. et al. Single-cell dissection of cellular components and interactions shaping the tumor immune phenotypes in ovarian cancer. Cancer Cell 39, 928–944.e6 (2021).
pubmed: 33961783
doi: 10.1016/j.ccell.2021.04.004
Desbois, M. et al. Integrated digital pathology and transcriptome analysis identifies molecular mediators of T-cell exclusion in ovarian cancer. Nat. Commun. 11, 5583 (2020).
pubmed: 33149148
pmcid: 7642433
doi: 10.1038/s41467-020-19408-2
Ghisoni, E. et al. Integrated digital pathology and single-cell analysis identify the spatial and temporal evolution of immune cells networks in epithelial ovarian cancer [abstract 27MO]. Ann. Oncol. 33 (Suppl. 5), 395 (2022).
doi: 10.1016/j.annonc.2022.04.045
Hegde, P. S., Karanikas, V. & Evers, S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin. Cancer Res. 22, 1865–1874 (2016).
pubmed: 27084740
doi: 10.1158/1078-0432.CCR-15-1507
Galon, J. et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J. Pathol. 232, 199–209 (2014).
pubmed: 24122236
doi: 10.1002/path.4287
Fridman, W. H., Zitvogel, L., Sautes-Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).
pubmed: 28741618
doi: 10.1038/nrclinonc.2017.101
Bruni, D., Angell, H. K. & Galon, J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20, 662–680 (2020).
pubmed: 32753728
doi: 10.1038/s41568-020-0285-7
van der Leun, A. M., Thommen, D. S. & Schumacher, T. N. CD8
pubmed: 32024970
pmcid: 7115982
doi: 10.1038/s41568-019-0235-4
Simoni, Y. et al. Bystander CD8
pubmed: 29769722
doi: 10.1038/s41586-018-0130-2
Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017).
pubmed: 28102259
doi: 10.1038/nature21349
Salerno, E. P. et al. Human melanomas and ovarian cancers overexpressing mechanical barrier molecule genes lack immune signatures and have increased patient mortality risk. Oncoimmunology 5, e1240857 (2016).
pubmed: 28123876
pmcid: 5215363
doi: 10.1080/2162402X.2016.1240857
Chae, C. S. et al. Tumor-derived lysophosphatidic acid blunts protective type-I interferon responses in ovarian cancer. Cancer Discov. 12, 1904–1921 (2022).
pubmed: 35552618
pmcid: 9357054
doi: 10.1158/2159-8290.CD-21-1181
Song, M. et al. IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature 562, 423–428 (2018).
pubmed: 30305738
pmcid: 6237282
doi: 10.1038/s41586-018-0597-x
Barkal, A. A. et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572, 392–396 (2019).
pubmed: 31367043
pmcid: 6697206
doi: 10.1038/s41586-019-1456-0
Brightwell, R. M. et al. The CD47 “don’t eat me signal” is highly expressed in human ovarian cancer. Gynecol. Oncol. 143, 393–397 (2016).
pubmed: 27569584
pmcid: 5077667
doi: 10.1016/j.ygyno.2016.08.325
Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789.e18 (2019).
pubmed: 30595452
doi: 10.1016/j.cell.2018.11.043
Ferrone, S. & Marincola, F. M. Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol. Today 16, 487–494 (1995).
pubmed: 7576053
doi: 10.1016/0167-5699(95)80033-6
Han, L. Y. et al. HLA class I antigen processing machinery component expression and intratumoral T-cell infiltrate as independent prognostic markers in ovarian carcinoma. Clin. Cancer Res. 14, 3372–3379 (2008).
pubmed: 18519766
pmcid: 3426216
doi: 10.1158/1078-0432.CCR-07-4433
McPherson, A. et al. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat. Genet. 48, 758–767 (2016).
pubmed: 27182968
doi: 10.1038/ng.3573
Zhang, A. W. et al. Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell 173, 1755–1769.e22 (2018).
pubmed: 29754820
doi: 10.1016/j.cell.2018.03.073
Jimenez-Sanchez, A. et al. Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient. Cell 170, 927–938.e20 (2017).
pubmed: 28841418
pmcid: 5589211
doi: 10.1016/j.cell.2017.07.025
Launonen, I. M. et al. Single-cell tumor-immune microenvironment of BRCA1/2 mutated high-grade serous ovarian cancer. Nat. Commun. 13, 835 (2022).
pubmed: 35149709
pmcid: 8837628
doi: 10.1038/s41467-022-28389-3
Ghisoni, E. et al. Myeloid cell networks determine reinstatement of original immune environments in recurrent ovarian cancer. Preprint at bioRxiv https://doi.org/10.1101/2024.05.02.590528 (2024).
Trujillo, J. A., Sweis, R. F., Bao, R. & Luke, J. J. T cell-inflamed versus non-T cell-inflamed tumors: a conceptual framework for cancer immunotherapy drug development and combination therapy selection. Cancer Immunol. Res. 6, 990–1000 (2018).
pubmed: 30181337
pmcid: 6145135
doi: 10.1158/2326-6066.CIR-18-0277
Morad, G., Helmink, B. A., Sharma, P. & Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 185, 576 (2022).
pubmed: 35120665
doi: 10.1016/j.cell.2022.01.008
Kalbasi, A. & Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 20, 25–39 (2020).
pubmed: 31570880
doi: 10.1038/s41577-019-0218-4
Ghisoni, E., Imbimbo, M., Zimmermann, S. & Valabrega, G. Ovarian cancer immunotherapy: turning up the heat. Int. J. Mol. Sci. 20, 2927 (2019).
pubmed: 31208030
pmcid: 6628106
doi: 10.3390/ijms20122927
Huang, R. Y. et al. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8
pubmed: 26318293
pmcid: 4694995
doi: 10.18632/oncotarget.4751
Fucikova, J. et al. TIM-3 dictates functional orientation of the immune infiltrate in ovarian cancer. Clin. Cancer Res. 25, 4820–4831 (2019).
pubmed: 31076549
doi: 10.1158/1078-0432.CCR-18-4175
Blanc-Durand, F. et al. Distribution of novel immune-checkpoint targets in ovarian cancer tumor microenvironment: a dynamic landscape. Gynecol. Oncol. 160, 279–284 (2021).
pubmed: 33162175
doi: 10.1016/j.ygyno.2020.09.045
Schöffski, P. et al. Phase I/II study of the LAG-3 inhibitor ieramilimab (LAG525) ± anti-PD-1 spartalizumab (PDR001) in patients with advanced malignancies. J. Immunother. Cancer 10, e003776 (2022).
pubmed: 35217575
pmcid: 8883259
doi: 10.1136/jitc-2021-003776
Harding, J. J. et al. Blocking TIM-3 in treatment-refractory advanced solid tumors: a phase Ia/b study of LY3321367 with or without an anti-PD-L1 antibody. Clin. Cancer Res. 27, 2168–2178 (2021).
pubmed: 33514524
doi: 10.1158/1078-0432.CCR-20-4405
Curigliano, G. et al. Phase I/Ib clinical trial of sabatolimab, an anti-TIM-3 antibody, alone and in combination with spartalizumab, an anti-PD-1 antibody, in advanced solid tumors. Clin. Cancer Res. 27, 3620–3629 (2021).
pubmed: 33883177
doi: 10.1158/1078-0432.CCR-20-4746
Sanborn, R. E. et al. Safety, tolerability and efficacy of agonist anti-CD27 antibody (varlilumab) administered in combination with anti-PD-1 (nivolumab) in advanced solid tumors. J. Immunother. Cancer 10, e005147 (2022).
pubmed: 35940825
pmcid: 9364417
doi: 10.1136/jitc-2022-005147
Mascarelli, D. E. et al. Boosting antitumor response by costimulatory strategies driven to 4-1BB and OX40 T-cell receptors. Front. Cell Dev. Biol. 9, 692982 (2021).
pubmed: 34277638
pmcid: 8277962
doi: 10.3389/fcell.2021.692982
Ramser, M. et al. High OX40 expression in recurrent ovarian carcinoma is indicative for response to repeated chemotherapy. BMC Cancer 18, 425 (2018).
pubmed: 29661166
pmcid: 5903007
doi: 10.1186/s12885-018-4339-0
Moiseyenko, A. et al. Sequential therapy with INCAGN01949 followed by ipilimumab and nivolumab in two patients with advanced ovarian carcinoma. Gynecol. Oncol. Rep. 34, 100655 (2020).
pubmed: 33083509
pmcid: 7554352
doi: 10.1016/j.gore.2020.100655
Goldman, J. W. et al. Safety and tolerability of MEDI0562, an OX40 agonist mAb, in combination with durvalumab or tremelimumab in adult patients with advanced solid tumors. Clin. Cancer Res. 28, 3709–3719 (2022).
pubmed: 35699623
doi: 10.1158/1078-0432.CCR-21-3016
Hoffman-Censits, J. et al. The JAVELIN Bladder Medley trial: avelumab-based combinations as first-line maintenance in advanced urothelial carcinoma. Future Oncol. 20, 179–190 (2024).
pubmed: 37671748
doi: 10.2217/fon-2023-0492
Hui, E. et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355, 1428–1433 (2017).
pubmed: 28280247
pmcid: 6286077
doi: 10.1126/science.aaf1292
Kamphorst, A. O. et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355, 1423–1427 (2017).
pubmed: 28280249
pmcid: 5595217
doi: 10.1126/science.aaf0683
Lakhani, N. et al. Phase 1 dose escalation study of the agonist redirected checkpoint, SL-172154 (SIRPα-Fc-CD40L) in subjects with platinum-resistant ovarian cancer [abstract 429]. J. Immunother. Cancer 9 (Suppl. 2), A459 (2021).
Frankish, J. et al. The CD40 agonist HERA-CD40L results in enhanced activation of antigen presenting cells, promoting an anti-tumor effect alone and in combination with radiotherapy. Front. Immunol. 14, 1160116 (2023).
pubmed: 37304285
pmcid: 10251205
doi: 10.3389/fimmu.2023.1160116
Ochoa de Olza, M., Navarro Rodrigo, B., Zimmermann, S. & Coukos, G. Turning up the heat on non-immunoreactive tumours: opportunities for clinical development. Lancet Oncol. 21, e419–e430 (2020).
pubmed: 32888471
doi: 10.1016/S1470-2045(20)30234-5
Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug. Discov. 18, 197–218 (2019).
pubmed: 30610226
doi: 10.1038/s41573-018-0007-y
Wang, M., Wang, S., Desai, J., Trapani, J. A. & Neeson, P. J. Therapeutic strategies to remodel immunologically cold tumors. Clin. Transl. Immunol. 9, e1226 (2020).
doi: 10.1002/cti2.1226
Herrera, F. G. et al. Low-dose radiotherapy reverses tumor immune desertification and resistance to immunotherapy. Cancer Discov. 12, 108–133 (2022).
pubmed: 34479871
doi: 10.1158/2159-8290.CD-21-0003
Zamarin, D. et al. Study to evaluate intraperitoneal (IP) ONCOS-102 with systemic durvalumab in patients with peritoneal disease who have epithelial ovarian (OC) or metastatic colorectal cancer (CRC): phase 2 results [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 2600 (2022).
doi: 10.1200/JCO.2022.40.16_suppl.2600
Barsoumian, H. B. et al. Low-dose radiation treatment enhances systemic antitumor immune responses by overcoming the inhibitory stroma. J. Immunother. Cancer 8, e000537 (2020).
pubmed: 33106386
pmcid: 7592253
doi: 10.1136/jitc-2020-000537
Reislander, T., Groelly, F. J. & Tarsounas, M. DNA damage and cancer immunotherapy: a STING in the tale. Mol. Cell 80, 21–28 (2020).
pubmed: 32810436
doi: 10.1016/j.molcel.2020.07.026
Xu, H. et al. CCNE1 copy number is a biomarker for response to combination WEE1-ATR inhibition in ovarian and endometrial cancer models. Cell Rep. Med. 2, 100394 (2021).
pubmed: 34622231
pmcid: 8484689
doi: 10.1016/j.xcrm.2021.100394
Keenan, T. E. et al. Clinical efficacy and molecular response correlates of the WEE1 inhibitor adavosertib combined with cisplatin in patients with metastatic triple-negative breast cancer. Clin. Cancer Res. 27, 983–991 (2021).
pubmed: 33257427
doi: 10.1158/1078-0432.CCR-20-3089
Binnewies, M. et al. Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. Cell Rep. 37, 109844 (2021).
pubmed: 34686340
doi: 10.1016/j.celrep.2021.109844
MacGregor, H. L. et al. High expression of B7-H3 on stromal cells defines tumor and stromal compartments in epithelial ovarian cancer and is associated with limited immune activation. J. Immunother. Cancer 7, 357 (2019).
pubmed: 31892360
pmcid: 6937725
doi: 10.1186/s40425-019-0816-5
Beckermann, K. E. et al. A phase 1b open-label study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of py314 in combination with pembrolizumab in patients with advanced renal cell carcinoma. Invest. New Drugs 42, 179–184 (2024).
pubmed: 38372949
doi: 10.1007/s10637-024-01419-1
Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942–949 (2004).
pubmed: 15322536
doi: 10.1038/nm1093
DePeaux, K. & Delgoffe, G. M. Metabolic barriers to cancer immunotherapy. Nat. Rev. Immunol. 21, 785–797 (2021).
pubmed: 33927375
pmcid: 8553800
doi: 10.1038/s41577-021-00541-y
Morotti, M. et al. PGE2 inhibits TIL expansion by disrupting IL-2 signalling and mitochondrial function. Nature 629, 426–434 (2024).
pubmed: 38658764
pmcid: 11078736
doi: 10.1038/s41586-024-07352-w
Eynde, B. J. V. D., Baren, N. V. & Baurain, J.-F. Is there a clinical future for IDO1 inhibitors after the failure of epacadostat in melanoma? Annu. Rev. Cancer Biol. 4, 241–256 (2020).
doi: 10.1146/annurev-cancerbio-030419-033635
An, D., Banerjee, S. & Lee, J. M. Recent advancements of antiangiogenic combination therapies in ovarian cancer. Cancer Treat. Rev. 98, 102224 (2021).
pubmed: 34051628
pmcid: 8217312
doi: 10.1016/j.ctrv.2021.102224
Huinen, Z. R., Huijbers, E. J. M., van Beijnum, J. R., Nowak-Sliwinska, P. & Griffioen, A. W. Anti-angiogenic agents – overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat. Rev. Clin. Oncol. 18, 527–540 (2021).
pubmed: 33833434
doi: 10.1038/s41571-021-00496-y
Lacher, S. B. et al. PGE
pubmed: 38658748
pmcid: 11078747
doi: 10.1038/s41586-024-07254-x
Rutten, M. J. et al. Laparoscopy to predict the result of primary cytoreductive surgery in patients with advanced ovarian cancer: a randomized controlled trial. J. Clin. Oncol. 35, 613–621 (2017).
pubmed: 28029317
doi: 10.1200/JCO.2016.69.2962
Topalian, S. L. et al. Neoadjuvant immune checkpoint blockade: a window of opportunity to advance cancer immunotherapy. Cancer Cell 41, 1551–1566 (2023).
pubmed: 37595586
doi: 10.1016/j.ccell.2023.07.011
Porter, R. L. et al. A phase 2, two-stage study of mirvetuximab soravtansine (IMGN853) in combination with pembrolizumab in patients with microsatellite stable (MSS) recurrent or persistent endometrial cancer [abstract]. Cancer Res. 84 (Suppl. 7), CT008 (2024).
doi: 10.1158/1538-7445.AM2024-CT008
Lybaert, L. et al. Challenges in neoantigen-directed therapeutics. Cancer Cell 41, 15–40 (2023).
pubmed: 36368320
doi: 10.1016/j.ccell.2022.10.013
Zacharakis, N. et al. Breast cancers are immunogenic: immunologic analyses and a phase II pilot clinical trial using mutation-reactive autologous lymphocytes. J. Clin. Oncol. 40, 1741–1754 (2022).
pubmed: 35104158
pmcid: 9148699
doi: 10.1200/JCO.21.02170
Schmidt, J. et al. Neoantigen-specific CD8 T cells with high structural avidity preferentially reside in and eliminate tumors. Nat. Commun. 14, 3188 (2023).
pubmed: 37280206
pmcid: 10244384
doi: 10.1038/s41467-023-38946-z
Kast, F., Klein, C., Umana, P., Gros, A. & Gasser, S. Advances in identification and selection of personalized neoantigen/T-cell pairs for autologous adoptive T cell therapies. Oncoimmunology 10, 1869389 (2021).
pubmed: 33520408
pmcid: 7808433
doi: 10.1080/2162402X.2020.1869389
Kandalaft, L. E., Odunsi, K. & Coukos, G. Immunotherapy in ovarian cancer: are we there yet? J. Clin. Oncol. 37, 2460–2471 (2019).
pubmed: 31403857
doi: 10.1200/JCO.19.00508
Dafni, U. et al. Efficacy of cancer vaccines in selected gynaecological breast and ovarian cancers: a 20-year systematic review and meta-analysis. Eur. J. Cancer 142, 63–82 (2021).
pubmed: 33221598
doi: 10.1016/j.ejca.2020.10.014
Harari, A., Graciotti, M., Bassani-Sternberg, M. & Kandalaft, L. E. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat. Rev. Drug. Discov. 19, 635–652 (2020).
pubmed: 32764681
doi: 10.1038/s41573-020-0074-8
Tanyi, J. L. et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci. Transl. Med. 10, eaao5931 (2018).
pubmed: 29643231
doi: 10.1126/scitranslmed.aao5931
Kandalaft, L. E. et al. Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo co-stimulated T cells in recurrent ovarian cancer. Oncoimmunology 2, e22664 (2013).
pubmed: 23482679
pmcid: 3583933
doi: 10.4161/onci.22664
Bobisse, S. et al. A phase 1 trial of adoptive transfer of vaccine-primed autologous circulating T cells in ovarian cancer. Nat. Cancer 4, 1410–1417 (2023).
pubmed: 37735588
doi: 10.1038/s43018-023-00623-x
Atsavapranee, E. S., Billingsley, M. M. & Mitchell, M. J. Delivery technologies for T cell gene editing: applications in cancer immunotherapy. EBioMedicine 67, 103354 (2021).
pubmed: 33910123
pmcid: 8099660
doi: 10.1016/j.ebiom.2021.103354
Corria-Osorio, J. et al. Orthogonal cytokine engineering enables novel synthetic effector states escaping canonical exhaustion in tumor-rejecting CD8
pubmed: 37081150
pmcid: 10154250
doi: 10.1038/s41590-023-01477-2
Vlad, A. M. et al. A phase II trial of intraperitoneal interleukin-2 in patients with platinum-resistant or platinum-refractory ovarian cancer. Cancer Immunol. Immunother. 59, 293–301 (2010).
pubmed: 19690855
doi: 10.1007/s00262-009-0750-3
Mucci, A. et al. Myeloid cell-based delivery of IFN-γ reprograms the leukemia microenvironment and induces anti-tumoral immune responses. EMBO Mol. Med. 13, e13598 (2021).
pubmed: 34459560
pmcid: 8495462
doi: 10.15252/emmm.202013598
Escobar, G. et al. Genetic engineering of hematopoiesis for targeted IFN-α delivery inhibits breast cancer progression. Sci. Transl. Med. 6, 217ra213 (2014).
doi: 10.1126/scitranslmed.3006353
Bertucci, F. et al. High-dose melphalan-based chemotherapy and autologous stem cell transplantation after second look laparotomy in patients with chemosensitive advanced ovarian carcinoma: long-term results. Bone Marrow Transpl. 26, 61–67 (2000).
doi: 10.1038/sj.bmt.1702468
Sabatier, R. et al. Are there candidates for high-dose chemotherapy in ovarian carcinoma? J. Exp. Clin. Cancer Res. 31, 87 (2012).
pubmed: 23072336
pmcid: 3523074
doi: 10.1186/1756-9966-31-87
Muller, A. M. et al. Long-term outcome of patients with metastatic breast cancer treated with high-dose chemotherapy and transplantation of purified autologous hematopoietic stem cells. Biol. Blood Marrow Transpl. 18, 125–133 (2012).
doi: 10.1016/j.bbmt.2011.07.009