The child the apple eats: processing of argument structure in Mandarin verb-final sentences.
Argument structure
Bag of arguments
Competition model
EEG
ERP
Extended argument dependency model
Mandarin
Role reversals
Semantic P600
Sentence processing
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
03 09 2024
03 09 2024
Historique:
received:
23
06
2023
accepted:
14
08
2024
medline:
4
9
2024
pubmed:
4
9
2024
entrez:
3
9
2024
Statut:
epublish
Résumé
Mandarin Chinese is typologically unusual among the world's languages in having flexible word order despite a near absence of inflectional morphology. These features of Mandarin challenge conventional linguistic notions such as subject and object and the divide between syntax and semantics. In the present study, we tested monolingual processing of argument structure in Mandarin verb-final sentences, where word order alone is not a reliable cue. We collected participants' responses to a forced agent-assignment task while measuring their electroencephalography data to capture real-time processing throughout each sentence. We found that sentence interpretation was not informed by word order in the absence of other cues, and while the coverbs BA and BEI were strong signals for agent selection, comprehension was a result of multiple cues. These results challenge previous reports of a linear ranking of cue strength. Event-related potentials showed that BA and BEI impacted participants' processing even before the verb was read and that role reversal anomalies elicited an N400 effect without a subsequent semantic P600. This study demonstrates that Mandarin sentence comprehension requires online interaction among cues in a language-specific manner, consistent with models that predict crosslinguistic differences in core sentence processing mechanisms.
Identifiants
pubmed: 39227638
doi: 10.1038/s41598-024-70318-5
pii: 10.1038/s41598-024-70318-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
20459Informations de copyright
© 2024. The Author(s).
Références
Coupé, C., Oh, Y. M., Dediu, D. & Pellegrino, F. Different languages, similar encoding efficiency: Comparable information rates across the human communicative niche. Sci. Adv. 5, 66 (2019).
doi: 10.1126/sciadv.aaw2594
Sainburg, T., Theilman, B., Thielk, M. & Gentner, T. Q. Parallels in the sequential organization of birdsong and human speech. Nat. Commun. 10, 1–11 (2019).
doi: 10.1038/s41467-019-11605-y
Hickok, G. Chapter 4—The dual stream model of speech and language processing. In Aphasia (eds. Hillis, A. E. & Fridriksson, J.) 185, 57–69 (Elsevier, 2022).
Kutas, M. & Hillyard, S. Reading senseless sentences: Brain potentials reflect semantic incongruity. Science (80) 207, 203–205 (1980).
doi: 10.1126/science.7350657
Lau, E. F., Phillips, C. & Poeppel, D. A cortical network for semantics: (De)constructing the N400. Nat. Rev. Neurosci. 9, 920–933 (2008).
pubmed: 19020511
doi: 10.1038/nrn2532
Costa, A., Strijkers, K., Martin, C. & Thierry, G. The time course of word retrieval revealed by event-related brain potentials during overt speech. Proc. Natl. Acad. Sci. 106, 21442 (2009).
pubmed: 19934043
pmcid: 2795564
doi: 10.1073/pnas.0908921106
Ferreira, F. & Patson, N. D. The ‘Good Enough’ approach to language comprehension. Lang. Linguist. Compass 1, 71–83 (2007).
doi: 10.1111/j.1749-818X.2007.00007.x
Christiansen, M. H. & Chater, N. The Now-or-Never bottleneck: A fundamental constraint on language. Behav. Brain Sci. 39, 66 (2015).
Krebs, J., Malaia, E., Wilbur, R. B. & Roehm, D. Subject preference emerges as cross-modal strategy for linguistic processing. Brain Res. 1691, 105–117 (2018).
pubmed: 29627484
doi: 10.1016/j.brainres.2018.03.029
Wang, L., Schlesewsky, M., Bickel, B. & Bornkessel-Schlesewsky, I. Exploring the nature of the ’subject’-preference: Evidence from the online comprehension of simple sentences in Mandarin Chinese. Lang. Cogn. Process. 24, 1180–1226 (2009).
doi: 10.1080/01690960802159937
Evans, N. & Levinson, S. C. The myth of language universals: Language diversity and its importance for cognitive science. Behav. Brain Sci. 32, 429–448 (2009).
pubmed: 19857320
doi: 10.1017/S0140525X0999094X
Friederici, A. D. & Frisch, S. Verb argument structure processing: The role of verb-specific and argument-specific information. J. Mem. Lang. 43, 476–507 (2000).
doi: 10.1006/jmla.2000.2709
Levy, R. P. & Keller, F. Expectation and locality effects in German verb-final structures. J. Mem. Lang. 68, 199–222 (2013).
pubmed: 24558294
doi: 10.1016/j.jml.2012.02.005
Vasishth, S., Suckow, K., Lewis, R. L. & Kern, S. Short-term forgetting in sentence comprehension: Crosslinguistic evidence from verb-final structures. Lang. Cogn. Process. 25, 533–567 (2010).
doi: 10.1080/01690960903310587
Bates, E., McNew, S., MacWhinney, B., Devescovi, A. & Smith, S. Functional constraints on sentence processing: A cross-linguistic study. Cognition 11, 245–299 (1982).
pubmed: 7199413
doi: 10.1016/0010-0277(82)90017-8
Bornkessel-Schlesewsky, I. et al. Think globally: Cross-linguistic variation in electrophysiological activity during sentence comprehension. Brain Lang. 117, 133–152 (2011).
pubmed: 20970843
doi: 10.1016/j.bandl.2010.09.010
Li, A., & Thompson, S. A. Mandarin Chinese: A Functional Reference Grammar. (University of California Press, 1989).
Wu, F. & He, Y. Some typological characteristics of Mandarin Chinese Syntax. In The Oxford Handbook of Chinese Linguistics (Oxford University Press, 2015). https://doi.org/10.1093/oxfordhb/9780199856336.013.0020
Chappell, H., Ming, L. & Peyraube, A. Chinese linguistics and typology: The state of the art. Linguist. Typol. 11, 187–211 (2007).
LaPolla, R. Arguments Against ‘Subject’ and ‘Direct Object’ as Viable Concepts (in Chinese) (1993).
Xu, L. Topic prominence. In The Oxford Handbook of Chinese Linguistics (Oxford University Press, 2015). https://doi.org/10.1093/oxfordhb/9780199856336.013.0072
Lu, C.-C. et al. Judgements of grammaticality in aphasia: The special case of Chinese. Aphasiology 14, 1021–1054 (2000).
doi: 10.1080/02687030050156593
Su, I. R. Transfer of sentence processing strategies: A comparison of L2 learners of Chinese and English. Appl. Psycholinguist. 22, 83–112 (2001).
doi: 10.1017/S0142716401001059
Pylkkänen, L. The neural basis of combinatory syntax and semantics. Science (80) 366, 62–66 (2019).
doi: 10.1126/science.aax0050
Neville, H., Nicol, J. L., Barss, A., Forster, K. I. & Garrett, M. F. Syntactically based sentence processing classes: Evidence from event-related brain potentials. J. Cogn. Neurosci. 3, 151–165 (1991).
pubmed: 23972090
doi: 10.1162/jocn.1991.3.2.151
Chomsky, N. Chapter 2. Subsystems of core grammar. 2.6. LF-representation and θ-theory (2). In Lectures on Government and Binding 101–117 (DE GRUYTER MOUTON, 1993). https://doi.org/10.1515/9783110884166.101
Druks, J. Verbs and nouns—A review of the literature. J. Neurolinguistics 15, 289–315 (2002).
doi: 10.1016/S0911-6044(01)00029-X
Dowty, D. Thematic proto-roles and argument selection. Language 67, 547 (1991).
doi: 10.1353/lan.1991.0021
Bisang, W. From meaning to syntax—Semantic roles and beyond. In Semantic Role Universals and Argument Linking 191–236 (Mouton de Gruyter, 2006). https://doi.org/10.1515/9783110219272.191
Rissman, L. & Majid, A. Thematic roles: Core knowledge or linguistic construct?. Psychon. Bull. Rev. 26, 1850–1869 (2019).
pubmed: 31290008
pmcid: 6863944
doi: 10.3758/s13423-019-01634-5
Mahowald, K., Diachek, E., Gibson, E., Fedorenko, E. & Futrell, R. Grammatical cues are largely, but not completely, redundant with word meanings in natural language. CoRR abs/2201.1 (2022).
Li, P., Bates, E., Liu, H. & MacWhinney, B. Cues as functional constraints on sentence processing in Chinese. In Language Processing in Chinese (eds. Chen, H. C. & Tzeng, O.) 207–234 (North-Holland, 1992). https://doi.org/10.1016/S0166-4115(08)61893-2
Bender, E. The syntax of Mandarin Ba: Reconsidering the verbal analysis. J. East Asian Ling. 9, 105–145 (2000).
doi: 10.1023/A:1008348224800
Ting, J. Deriving the bei-construction in Mandarin Chinese. J. East Asian Ling. 7, 319–354 (1998).
doi: 10.1023/A:1008340108602
Li, C. & Thompson, S. Co-verbs in Mandarin Chinese: Verbs of prepositions?. J. Chin. Linguist. 2, 257–278 (1974).
Deng, X., Mai, Z. & Yip, V. An aspectual account of ba and bei constructions in child Mandarin. First Lang. 38, 243–262 (2018).
doi: 10.1177/0142723717743363
Huang, C.-T. J., Li, Y.-H. A. & Li, Y. The Syntax of Chinese (Cambridge University Press, 2009). https://doi.org/10.1017/CBO9781139166935
MacWhinney, B. The competition model: Past and future. In Mechanisms of Language Acquisition (ed. MacWhinney, B.) 3–16 (Psychology Press, 2022). https://doi.org/10.1007/978-3-030-66175-5_1
Martin, A. E. Language processing as cue integration: Grounding the psychology of language in perception and neurophysiology. Front. Psychol. 7, 1–17 (2016).
doi: 10.3389/fpsyg.2016.00120
MacWhinney, B. Chapter 14. A Unified Model of First and Second Language Learning. In 287–312 (2018). https://doi.org/10.1075/tilar.22.15mac
Osterhout, L. & Holcomb, P. J. Event-related brain potentials elicited by syntactic anomaly. J. Mem. Lang. 31, 785–806 (1992).
doi: 10.1016/0749-596X(92)90039-Z
Hoeks, J. C., Stowe, L. A. & Doedens, G. Seeing words in context: The interaction of lexical and sentence level information during reading. Cogn. Brain Res. 19, 59–73 (2004).
doi: 10.1016/j.cogbrainres.2003.10.022
Kolk, H. H. J., Chwilla, D. J., Van Herten, M. & Oor, P. J. W. Structure and limited capacity in verbal working memory: A study with event-related potentials. Brain Lang. 85, 1–36 (2003).
pubmed: 12681346
doi: 10.1016/S0093-934X(02)00548-5
Kim, A. & Osterhout, L. The independence of combinatory semantic processing: Evidence from event-related potentials. J. Mem. Lang. 52, 205–225 (2005).
doi: 10.1016/j.jml.2004.10.002
Kolk, H. H. J. & Chwilla, D. Late positivities in unusual situations. Brain Lang. 100, 257–261 (2007).
pubmed: 16919324
doi: 10.1016/j.bandl.2006.07.006
Kuperberg, G. R. Neural mechanisms of language comprehension: Challenges to syntax. Brain Res. 1146, 23–49 (2007).
pubmed: 17400197
doi: 10.1016/j.brainres.2006.12.063
Van Herten, M., Kolk, H. H. J. & Chwilla, D. J. An ERP study of P600 effects elicited by semantic anomalies. Cogn. Brain Res. 22, 241–255 (2005).
doi: 10.1016/j.cogbrainres.2004.09.002
Brouwer, H., Fitz, H. & Hoeks, J. Getting real about Semantic Illusions: Rethinking the functional role of the P600 in language comprehension. Brain Res. 1446, 127–143 (2012).
pubmed: 22361114
doi: 10.1016/j.brainres.2012.01.055
Brouwer, H., Delogu, F., Venhuizen, N. J. & Crocker, M. W. Neurobehavioral correlates of surprisal in language comprehension: A neurocomputational model. Front. Psychol. 12, 1–16 (2021).
doi: 10.3389/fpsyg.2021.615538
Bornkessel, I. & Schlesewsky, M. The extended argument dependency model: A neurocognitive approach to sentence comprehension across languages. Psychol. Rev. 113, 787–821 (2006).
pubmed: 17014303
doi: 10.1037/0033-295X.113.4.787
Bornkessel-Schlesewsky, I. & Schlesewsky, M. The argument dependency model. In Neurobiology of Language 357–369 (Elsevier, 2016). https://doi.org/10.1016/B978-0-12-407794-2.00030-4
Bornkessel-Schlesewsky, I. & Schlesewsky, M. An alternative perspective on ‘semantic P600’ effects in language comprehension. Brain Res. Rev. 59, 55–73 (2008).
pubmed: 18617270
doi: 10.1016/j.brainresrev.2008.05.003
Bornkessel, I. & Schlesewsky, M. The extended argument dependency model: A neurocognitive approach to sentence comprehension across languages. Psychol. Rev. 113, 787–821 (2006).
pubmed: 17014303
doi: 10.1037/0033-295X.113.4.787
Chow, W.-Y. & Phillips, C. No semantic illusions in the “Semantic P600” phenomenon: ERP evidence from Mandarin Chinese. Brain Res. 1506, 76–93 (2013).
pubmed: 23422676
doi: 10.1016/j.brainres.2013.02.016
Chow, W.-Y., Smith, C., Lau, E. & Phillips, C. A “bag-of-arguments” mechanism for initial verb predictions. Lang. Cogn. Neurosci. 31, 577–596 (2016).
doi: 10.1080/23273798.2015.1066832
Chow, W.-Y., Lau, E., Wang, S. & Phillips, C. Wait a second! Delayed impact of argument roles on on-line verb prediction. Lang. Cogn. Neurosci. 33, 803–828 (2018).
doi: 10.1080/23273798.2018.1427878
Chow, W.-Y., Momma, S., Smith, C., Lau, E. & Phillips, C. Prediction as memory retrieval: Timing and mechanisms. Lang. Cogn. Neurosci. 31, 617–627 (2016).
doi: 10.1080/23273798.2016.1160135
Liao, C. H., Lau, E. & Chow, W.-Y. Towards a processing model for argument-verb computations in online sentence comprehension. J. Mem. Lang. 126, 104350 (2022).
doi: 10.1016/j.jml.2022.104350
Bourguignon, N., Drury, J. E., Valois, D. & Steinhauer, K. Decomposing animacy reversals between agents and experiencers: An ERP study. Brain Lang. 122, 179–189 (2012).
pubmed: 22694997
doi: 10.1016/j.bandl.2012.05.001
Kyriaki, L., Schlesewsky, M. & Bornkessel-Schlesewsky, I. Semantic reversal anomalies under the microscope: Task and modality influences on language-associated event-related potentials. Eur. J. Neurosci. 52, 3803–3827 (2020).
pubmed: 32537795
doi: 10.1111/ejn.14862
Liu, H., Bates, E. & Li, P. Sentence interpretation in bilingual speakers of English and Chinese. Appl. Psycholinguist. 13, 451–484 (1992).
doi: 10.1017/S0142716400005762
Skalicky, S. & Chen, V. Forward and backward transfer of sentence processing cues in English and Mandarin Chinese: A call for approximate replication of Liu, Bates, and Li (1992) and Su (2001). Lang. Teach. https://doi.org/10.1017/S0261444820000464 (2020).
doi: 10.1017/S0261444820000464
Steinhauer, K., Pancheva, R., Newman, A. J., Gennari, S. & Ullman, M. T. How the mass counts: An electrophysiological approach to the processing of lexical features. Neuroreport 12, 66 (2001).
doi: 10.1097/00001756-200104170-00027
Meteyard, L. & Davies, R. A. I. Best practice guidance for linear mixed-effects models in psychological science. J. Mem. Lang. 112, 104092 (2020).
doi: 10.1016/j.jml.2020.104092
Brysbaert, M. & Stevens, M. Power analysis and effect size in mixed effects models: A tutorial. J. Cogn. 1, 66 (2018).
Kuperberg, G. R., Brothers, T. & Wlotko, E. W. A tale of two positivities and the N400: Distinct neural signatures are evoked by confirmed and violated predictions at different levels of representation. J. Cogn. Neurosci. 32, 12–35 (2020).
pubmed: 31479347
doi: 10.1162/jocn_a_01465
Miao, X. Word order and semantic strategies in Chinese sentence comprehension. Int. J. Psycholinguist. 8, 109–122 (1981).
Wang, L., Schlesewsky, M., Philipp, M. & Bornkessel-Schlesewsky, I. The role of Animacy in online argument interpretation in Mandarin Chinese. Case Word Order Promin. 40, 91–119 (2012).
doi: 10.1007/978-94-007-1463-2_5
Yu, S. & Tamaoka, K. Age-related differences in the acceptability of non-canonical word orders in Mandarin Chinese. Ling. Sin. 4, 66 (2018).
Hsien-Yi, G. W. The Syntax-Semantics Interface: The BA and BEI Constructions in Mandarin (National University of Singapore, 1998).
Scorolli, C. et al. Abstract and concrete sentences, embodiment, and languages. Front. Psychol. 2, 66 (2011).
doi: 10.3389/fpsyg.2011.00227
Barsalou, L. W., Dutriaux, L. & Scheepers, C. Moving beyond the distinction between concrete and abstract concepts. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170144 (2018).
doi: 10.1098/rstb.2017.0144
Borghi, A. M. et al. Words as social tools: Language, sociality and inner grounding in abstract concepts. Phys. Life Rev. 29, 120–153 (2019).
pubmed: 30573377
doi: 10.1016/j.plrev.2018.12.001
Lowder, M. W., Zhou, A. & Gordon, P. C. The lab discovered: Place-for-institution metonyms appearing in subject position are processed as agents. J. Exp. Psychol. Learn. Mem. Cogn. https://doi.org/10.1037/xlm0001314 (2023).
doi: 10.1037/xlm0001314
pubmed: 38095949
Lowder, M. W. & Gordon, P. C. Natural forces as agents: Reconceptualizing the animate–inanimate distinction. Cognition 136, 85–90 (2015).
pubmed: 25497518
doi: 10.1016/j.cognition.2014.11.021
Schendan, H. E. & Kutas, M. Neurophysiological evidence for transfer appropriate processing of memory: Processing versus feature similarity. Psychon. Bull. Rev. 14, 612–619 (2007).
pubmed: 17972722
doi: 10.3758/BF03196810
Potts, G. F. An ERP index of task relevance evaluation of visual stimuli. Brain Cogn. 56, 5–13 (2004).
pubmed: 15380870
doi: 10.1016/j.bandc.2004.03.006
Potts, G. F. & Tucker, D. M. Frontal evaluation and posterior representation in target detection. Cogn. Brain Res. 11, 147–156 (2001).
doi: 10.1016/S0926-6410(00)00075-6
Philipp, M., Bornkessel-Schlesewsky, I., Bisang, W. & Schlesewsky, M. The role of animacy in the real time comprehension of Mandarin Chinese: Evidence from auditory event-related brain potentials. Brain Lang. 105, 112–133 (2008).
pubmed: 17996287
doi: 10.1016/j.bandl.2007.09.005
Kutas, M. & Federmeier, K. D. Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annu. Rev. Psychol. 62, 621–647 (2011).
pubmed: 20809790
pmcid: 4052444
doi: 10.1146/annurev.psych.093008.131123
Friederici, A. D. The time course of syntactic activation during language processing: A model based on neuropsychological and neurophysiological data. Brain Lang. 50, 259–281 (1995).
pubmed: 7583190
doi: 10.1006/brln.1995.1048
Sassenhagen, J., Schlesewsky, M. & Bornkessel-Schlesewsky, I. The P600-as-P3 hypothesis revisited: Single-trial analyses reveal that the late EEG positivity following linguistically deviant material is reaction time aligned. Brain Lang. 137, 29–39 (2014).
pubmed: 25151545
doi: 10.1016/j.bandl.2014.07.010
Brouwer, H., Crocker, M. W., Venhuizen, N. J. & Hoeks, J. C. J. A neurocomputational model of the N400 and the P600 in language processing. Cogn. Sci. 41, 1318–1352 (2017).
pubmed: 28000963
doi: 10.1111/cogs.12461
Brouwer, H. & Crocker, M. W. On the proper treatment of the N400 and P600 in language comprehension. Front. Psychol. 8, 66 (2017).
doi: 10.3389/fpsyg.2017.01327
Li, J. & Ettinger, A. Heuristic interpretation as rational inference: A computational model of the N400 and P600 in language processing. Cognition 233, 105359 (2023).
pubmed: 36549129
doi: 10.1016/j.cognition.2022.105359
Ryskin, R. et al. An ERP index of real-time error correction within a noisy-channel framework of human communication. Neuropsychologia 158, 107855 (2021).
pubmed: 33865848
doi: 10.1016/j.neuropsychologia.2021.107855
Bornkessel-Schlesewsky, I. & Schlesewsky, M. Toward a neurobiologically plausible model of language-related, negative event-related potentials. Front. Psychol. 10, 1–17 (2019).
doi: 10.3389/fpsyg.2019.00298
Baggio, G. & Hagoort, P. The balance between memory and unification in semantics: A dynamic account of the N400. Lang. Cogn. Process. 26, 1338–1367 (2011).
doi: 10.1080/01690965.2010.542671
Royle, P., Drury, J. E. & Steinhauer, K. ERPs and task effects in the auditory processing of gender agreement and semantics in French. Ment. Lex. 8, 216–244 (2013).
doi: 10.1075/ml.8.2.05roy
Schacht, A., Sommer, W., Shmuilovich, O., Martínez, P. C. & Martín-Loeches, M. Differential task effects on N400 and P600 elicited by semantic and syntactic violations. PLoS ONE 9, 1–7 (2014).
doi: 10.1371/journal.pone.0091226
Deacon, D. & Shelley-Tremblay, J. How automatically is meaning accessed: A review of the effects of attention on semantic processing. Front. Biosci. 5, e82 (2000).
pubmed: 10966871
Lau, E. F., Holcomb, P. J. & Kuperberg, G. R. Dissociating N400 effects of prediction from association in single-word contexts. J. Cogn. Neurosci. 25, 484–502 (2013).
pubmed: 23163410
doi: 10.1162/jocn_a_00328
Levshina, N. et al. Why we need a gradient approach to word order. Linguistics 61, 825–883 (2023).
doi: 10.1515/ling-2021-0098
MacWhinney, B. The competition model: Past and future. In A Life in Cognition (eds. Gervain, J., Csibra, G. & Kovács, K.) 3–16 (2022). https://doi.org/10.1007/978-3-030-66175-5_1
Tang, J., LeBel, A., Jain, S. & Huth, A. G. Semantic reconstruction of continuous language from non-invasive brain recordings. bioRxiv 26, 66 (2022).
Cao, L., Huang, D., Zhang, Y., Jiang, X. & Chen, Y. Brain decoding using fNIRS. In 35th AAAI Conference Artificial Intelligence AAAI 2021, vol. 14A 12602–12611 (2021).
Gueorguieva, R. & Krystal, J. H. Move over ANOVA. Arch. Gen. Psychiatry 61, 310 (2004).
pubmed: 14993119
doi: 10.1001/archpsyc.61.3.310
Yang, N., Waddington, G., Adams, R. & Han, J. Translation, cultural adaption, and test–retest reliability of Chinese versions of the Edinburgh Handedness Inventory and Waterloo Footedness Questionnaire. Laterality Asymm. Body Brain Cogn. 23, 255–273 (2018).
doi: 10.1080/1357650X.2017.1357728
Yang, J. Learners and users of English in China. English Today 22, 3–10 (2006).
doi: 10.1017/S0266078406002021
Yan, J. & Huizhong, Y. The English proficiency of college and university students in China: As reflected in the CET. Lang. Cult. Curric. 19, 21–36 (2006).
doi: 10.1080/07908310608668752
Lemhöfer, K. & Broersma, M. Introducing LexTALE: A quick and valid Lexical Test for Advanced Learners of English. Behav. Res. Methods 44, 325–343 (2012).
pubmed: 21898159
doi: 10.3758/s13428-011-0146-0
Chan, I. L. & Chang, C. B. LEXTALE_CH: A quick, character-based proficiency test for Mandarin Chinese. Proc. Annu. Bost. Univ. Conf. Lang. Dev. 42, 114–130 (2018).
Cai, Q. & Brysbaert, M. SUBTLEX-CH: Chinese word and character frequencies based on film subtitles. PLoS ONE 5, e10729 (2010).
pubmed: 20532192
pmcid: 2880003
doi: 10.1371/journal.pone.0010729
Her, O.-S. Argument-function mismatches in Mandarin resultatives: A lexical mapping account. Lingua 117, 221–246 (2007).
doi: 10.1016/j.lingua.2006.01.002
Van Casteren, M. & Davis, M. H. Mix, a program for pseudorandomization. Behav. Res. Methods 38, 584–589 (2006).
pubmed: 17393828
doi: 10.3758/BF03193889
Winkler, I., Debener, S., Muller, K. R. & Tangermann, M. On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP. In Proceedings of the Annual International Conference on IEEE Engineering in Medicine and Biology Society EMBS 2015-Novem 4101–4105 (2015).
Steinhauer, K. & Drury, J. E. On the early left-anterior negativity (ELAN) in syntax studies. Brain Lang. 120, 135–162 (2012).
pubmed: 21924483
doi: 10.1016/j.bandl.2011.07.001
R Core Team. R: A Language and Environment for Statistical Computing (2017).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 66 (2015).
doi: 10.18637/jss.v067.i01
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 66 (2017).
doi: 10.18637/jss.v082.i13
Voeten, C. C. buildmer: Stepwise Elimination and Term Reordering for Mixed-Effects Regression (2021).
Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H. & Bates, D. Balancing Type I error and power in linear mixed models. J. Mem. Lang. 94, 305–315 (2017).
doi: 10.1016/j.jml.2017.01.001
Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: Keep it maximal. J. Mem. Lang. 68, 255–278 (2013).
doi: 10.1016/j.jml.2012.11.001
Russell, L. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.2 (2019).
Loken, E. & Gelman, A. Measurement error and the replication crisis—The assumption that measurement error always reduces effect sizes is fals. Science (80) 355, 582–584 (2017).
Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science (2021).
Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).
doi: 10.21105/joss.01686
Inkscape Project. Inkscape (2020).
Ratcliff, R. Methods for dealing with reaction time outliers. Psychol. Bull. 114, 510–532 (1993).
pubmed: 8272468
doi: 10.1037/0033-2909.114.3.510
Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge University Press, 2006). https://doi.org/10.1017/CBO9780511790942
Lo, S. & Andrews, S. To transform or not to transform: using generalized linear mixed models to analyse reaction time data. Front. Psychol. 6, 66 (2015).
doi: 10.3389/fpsyg.2015.01171
Morís Fernández, L. & Vadillo, M. A. Flexibility in reaction time analysis: Many roads to a false positive?. R. Soc. Open Sci. 7, 190831 (2020).
pubmed: 32257303
pmcid: 7062108
doi: 10.1098/rsos.190831
Cunnings, I. & Fujita, H. Quantifying individual differences in native and nonnative sentence processing. Appl. Psycholinguist. 42, 579–599 (2021).
doi: 10.1017/S0142716420000648
Kidd, E., Donnelly, S. & Christiansen, M. H. Individual differences in language acquisition and processing. Trends Cogn. Sci. 22, 154–169 (2018).
pubmed: 29277256
doi: 10.1016/j.tics.2017.11.006
Kaan, E. Event-related potentials and language processing: A brief overview. Lang. Linguist. Compass 1, 571–591 (2007).
doi: 10.1111/j.1749-818X.2007.00037.x
Herbay, A. ERPscope (2022).