Calbindin and Girk2/Aldh1a1 define resilient vs vulnerable dopaminergic neurons in a primate Parkinson's disease model.
Journal
NPJ Parkinson's disease
ISSN: 2373-8057
Titre abrégé: NPJ Parkinsons Dis
Pays: United States
ID NLM: 101675390
Informations de publication
Date de publication:
02 Sep 2024
02 Sep 2024
Historique:
received:
17
04
2024
accepted:
05
08
2024
medline:
3
9
2024
pubmed:
3
9
2024
entrez:
2
9
2024
Statut:
epublish
Résumé
The differential vulnerability of dopaminergic neurons of the substantia nigra pars compacta (SNc) is a critical and unresolved question in Parkinson´s disease. Studies in mice show diverse susceptibility of subpopulations of nigral dopaminergic neurons to various toxic agents. In the primate midbrain, the molecular phenotypes of dopaminergic neurons and their differential vulnerability are poorly characterized. We performed a detailed histological study to determine the anatomical distribution of different molecular phenotypes within identified midbrain neurons and their selective vulnerability in control and MPTP-treated monkeys. In the ventral tier of the SNc (nigrosome), neurons rich in Aldh1a1 and Girk2 are intermingled, whereas calbindin is the marker that best identifies the most resilient neurons located in the dorsal tier and ventral tegmental area, recapitulating the well-defined dorsoventral axis of susceptibility to degeneration of dopaminergic neurons. In particular, a loss of Aldh1a1+ neurons in the ventral SNc was observed in parallel to the progressive development of parkinsonism. Aldh1a1+ neurons were the main population of vulnerable dopaminergic nigrostriatal-projecting neurons, while Aldh1a1- neurons giving rise to nigropallidal projections remained relatively preserved. Moreover, bundles of entwined Aldh1a1+ dendrites with long trajectories extending towards the substantia nigra pars reticulata emerged from clusters of Aldh1a1+ neurons and colocalized with dense cannabinoid receptor 1 afferent fibers likely representing part of the striatonigral projection that is affected in human disorders, including Parkinson´s disease. In conclusion, vulnerable nigrostriatal-projecting neurons can be identified by using Aldh1a1 and Girk2. Further studies are needed to define the afferent/efferent projection patterns of these most vulnerable neurons.
Identifiants
pubmed: 39223183
doi: 10.1038/s41531-024-00777-0
pii: 10.1038/s41531-024-00777-0
doi:
Types de publication
Journal Article
Langues
eng
Pagination
165Subventions
Organisme : Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
ID : CP19/00200
Organisme : Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
ID : PI23/00672
Informations de copyright
© 2024. The Author(s).
Références
Blesa, J., Foffani, G., Dehay, B., Bezard, E. & Obeso, J. A. Motor and non-motor circuit disturbances in early Parkinson disease: which happens first? Nat Rev. Neurosci. 23, 115–128 (2022).
pubmed: 34907352
doi: 10.1038/s41583-021-00542-9
Pineda-Pardo, J. D. S. A., Sánchez-Ferro, Á., Monje, M. H. G., Pavese, N. & Obeso, J. A. Onset pattern of nigrostriatal denervation in early Parkinson’s disease. Brain 145, 1018–1028 (2022).
pubmed: 35349639
pmcid: 9351472
doi: 10.1093/brain/awab378
Monje, M. H. G. et al. Motor Onset Topography and Progression in Parkinson’s Disease: the Upper Limb Is First. Movement Disorders 36, 905–915 (2021).
pubmed: 33471950
doi: 10.1002/mds.28462
Damier, P., Hirsch, E. C., Agid, Y. & Graybiel, A. M. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122, 1437–1448 (1999).
pubmed: 10430830
doi: 10.1093/brain/122.8.1437
German, D. C., Manaye, K., Smith, W. K., Woodward, D. J. & Saper, C. B. Midbrain dopaminergic cell loss in parkinson’s disease: Computer visualization. Ann Neurol. 26, 507–514 (1989).
pubmed: 2817827
doi: 10.1002/ana.410260403
Brodsky, M. et al. Nigrosome 1 absence in de novo Parkinson disease. Neurology 90, 522–523 (2018).
pubmed: 29530959
pmcid: 10681067
doi: 10.1212/WNL.0000000000005128
Hirsch, E. C. Biochemistry of Parkinson’s disease with special reference to the dopaminergic systems. Mol Neurobiol. 9, 135–142 (1994).
pubmed: 7888089
doi: 10.1007/BF02816113
Giguère, N., Burke Nanni, S. & Trudeau, L.-E. On Cell Loss and Selective Vulnerability of Neuronal Populations in Parkinson’s Disease. Front Neurol. 9, 455 (2018).
pubmed: 29971039
pmcid: 6018545
doi: 10.3389/fneur.2018.00455
Dauer, W. & Przedborski, S. Parkinson’s disease: mechanisms and models. Neuron 39, 889–909 (2003).
pubmed: 12971891
doi: 10.1016/S0896-6273(03)00568-3
Surmeier, D. J., Obeso, J. A. & Halliday, G. M. Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 18, 101–113 (2017).
pubmed: 28104909
pmcid: 5564322
doi: 10.1038/nrn.2016.178
Gaertner, Z., Azcorra, M., Dombeck, D. A. & Awatramani, R. Molecular heterogeneity in the substantia nigra: A roadmap for understanding PD motor pathophysiology. Neurobiol Dis 175, 105925 (2022).
pubmed: 36372290
doi: 10.1016/j.nbd.2022.105925
Poulin, J.-F., Gaertner, Z., Moreno-Ramos, O. A. & Awatramani, R. Classification of Midbrain Dopamine Neurons Using Single-Cell Gene Expression Profiling Approaches. Trends Neurosci. 43, 155–169 (2020).
pubmed: 32101709
pmcid: 7285906
doi: 10.1016/j.tins.2020.01.004
Garritsen, O., van Battum, E. Y., Grossouw, L. M. & Pasterkamp, R. J. Development, wiring and function of dopamine neuron subtypes. Nat Rev. Neurosci. 24, 134–152 (2023).
pubmed: 36653531
doi: 10.1038/s41583-022-00669-3
Sjöstedt, E. et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science (1979) 367, eaay5947 (2020).
La Manno, G. et al. Molecular Diversity of Midbrain Development in Mouse, Human, and Stem. Cells. Cell 167, 566–580.e19 (2016).
pubmed: 27716510
doi: 10.1016/j.cell.2016.09.027
Blesa, J., Trigo-Damas, I., del Rey, N. L. G. & Obeso, J. A. The use of nonhuman primate models to understand processes in Parkinson’s disease. J Neural Transm (Vienna) 125, 1–11 (2018).
Kamath, T. et al. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease. Nat Neurosci. 25, 588–595 (2022).
pubmed: 35513515
pmcid: 9076534
doi: 10.1038/s41593-022-01061-1
Tang, L. et al. A primate nigrostriatal atlas of neuronal vulnerability and resilience in a model of Parkinson’s disease. Nat Commun. 14, (2023).
Wang, Q. et al. Molecular profiling of human substantia nigra identifies diverse neuron types associated with vulnerability in Parkinson’s disease. Sci. Adv. 10, eadi8287 (2024).
pubmed: 38198537
pmcid: 10780895
doi: 10.1126/sciadv.adi8287
Martirosyan, A. et al. Unravelling cell type-specific responses to Parkinson’s Disease at single cell resolution. Mol Neurodegener 19, 7 (2024).
pubmed: 38245794
pmcid: 10799528
doi: 10.1186/s13024-023-00699-0
Kamath, T. & Macosko, E. Z. Insights into Neurodegeneration in Parkinson’s Disease from Single-Cell and Spatial Genomics. Movement Disorders 38, 518–525 (2023).
pubmed: 36881930
pmcid: 11056908
doi: 10.1002/mds.29374
Salmani, B. Y. et al. Transcriptomic atlas of midbrain dopamine neurons uncovers differential vulnerability in a Parkinsonism lesion model. Elife 12, (2023).
Blesa, J. & Przedborski, S. Parkinson’s Disease: animal models and dopaminergic cell vulnerability. Front Neuroanat. 8, 155 (2014).
pubmed: 25565980
pmcid: 4266040
doi: 10.3389/fnana.2014.00155
Blesa, J. et al. The nigrostriatal system in the presymptomatic and symptomatic stages in the MPTP monkey model: A PET, histological and biochemical study. Neurobiol. Dis. 48, 79–91 (2012).
pubmed: 22677034
doi: 10.1016/j.nbd.2012.05.018
Blesa, J. et al. Progression of dopaminergic depletion in a model of MPTP-induced Parkinsonism in non-human primates. An 18F-DOPA and 11C-DTBZ PET study. Neurobiol Dis. 38, 456–463 (2010).
pubmed: 20304066
doi: 10.1016/j.nbd.2010.03.006
Damier, P., Hirsch, E. C., Agid, Y. & Graybiel, A. M. The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28 K) immunohistochemistry. Brain 122, 1421–1436 (1999).
pubmed: 10430829
doi: 10.1093/brain/122.8.1421
Gerfen, C. R., Herkenham, M. & Thibault, J. The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci. 7, 3915–3934 (1987).
pubmed: 2891799
pmcid: 6569093
doi: 10.1523/JNEUROSCI.07-12-03915.1987
Lynd-Balta, E. & Haber, S. N. The organization of midbrain projections to the ventral striatum in the primate. Neuroscience 59, 609–623 (1994).
pubmed: 7516505
doi: 10.1016/0306-4522(94)90181-3
Haber, S. N., Ryoo, H., Cox, C. & Lu, W. Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. J Comp. Neurol. 362, 400–410 (1995).
pubmed: 8576447
doi: 10.1002/cne.903620308
Iravani, M. M. et al. A modified MPTP treatment regime produces reproducible partial nigrostriatal lesions in common marmosets. Eur J Neurosci. 21, 841–854 (2005).
pubmed: 15787691
doi: 10.1111/j.1460-9568.2005.03915.x
Fallon, J. H., Riley, J. N. & Moore, R. Y. Substantia nigra dopamine neurons: separate populations project to neostriatum and allocortex. Neurosci. Lett. 7, 157–162 (1978).
pubmed: 19605105
doi: 10.1016/0304-3940(78)90160-X
Crittenden, J. R. et al. Striosome-dendron bouquets highlight a unique striatonigral circuit targeting dopamine-containing neurons. Proc Natl Acad Sci USA 113, 11318–11323 (2016).
pubmed: 27647894
pmcid: 5056098
doi: 10.1073/pnas.1613337113
Pereira Luppi, M. et al. Sox6 expression distinguishes dorsally and ventrally biased dopamine neurons in the substantia nigra with distinctive properties and embryonic origins. Cell Rep. 37, 109975 (2021).
pubmed: 34758317
doi: 10.1016/j.celrep.2021.109975
Yamada, T., McGeer, P. L., Baimbridge, K. G. & McGeer, E. G. Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res. 526, 303–307 (1990).
pubmed: 2257487
doi: 10.1016/0006-8993(90)91236-A
Lavoie, B. & Parent, A. Dopaminergic neurons expressing calbindin in normal and parkinsonian monkeys. Neuroreport 2, 601–604 (1991).
pubmed: 1684519
doi: 10.1097/00001756-199110000-00012
Dopeso-Reyes, I. G. et al. Calbindin content and differential vulnerability of midbrain efferent dopaminergic neurons in macaques. Front Neuroanat 8, 146 (2014).
Inoue, K. et al. Recruitment of calbindin into nigral dopamine neurons protects against MPTP-Induced parkinsonism. Mov Disord 34, 200–209 (2019).
pubmed: 30161282
doi: 10.1002/mds.107
Blesa, J. & Vila, M. Parkinson disease, substantia nigra vulnerability, and calbindin expression: Enlightening the darkness? Movement Disorders 34, 161–163 (2019).
pubmed: 30675930
doi: 10.1002/mds.27618
Galter, D., Buervenich, S., Carmine, A., Anvret, M. & Olson, L. ALDH1 mRNA: Presence in human dopamine neurons and decreases in substantia nigra in Parkinson’s disease and in the ventral tegmental area in schizophrenia. Neurobiol Dis. 14, 637–647 (2003).
pubmed: 14678778
doi: 10.1016/j.nbd.2003.09.001
Liu, G. et al. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation. Journal of Clinical Investigation 124, 3032–3046 (2014).
pubmed: 24865427
pmcid: 4071380
doi: 10.1172/JCI72176
Poulin, J. F. et al. Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. Cell Rep. 9, 930–943 (2014).
pubmed: 25437550
pmcid: 4251558
doi: 10.1016/j.celrep.2014.10.008
Wu, J. et al. Distinct Connectivity and Functionality of Aldehyde Dehydrogenase 1a1-Positive Nigrostriatal Dopaminergic Neurons in Motor Learning. Cell Rep. 28, 1167–1181.e7 (2019).
pubmed: 31365862
pmcid: 6741442
doi: 10.1016/j.celrep.2019.06.095
Schein, J. C., Hunter, D. D. & Roffler-Tarlov, S. Girk2 expression in the ventral midbrain, cerebellum, and olfactory bulb and its relationship to the murine mutation weaver. Dev. Biol. 204, 432–450 (1998).
pubmed: 9882481
doi: 10.1006/dbio.1998.9076
Chung, C. Y. et al. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol. Genet. 14, 1709–1725 (2005).
pubmed: 15888489
doi: 10.1093/hmg/ddi178
Mendez, I. et al. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain 128, 1498–1510 (2005).
pubmed: 15872020
doi: 10.1093/brain/awh510
Grealish, S. et al. The A9 dopamine neuron component in grafts of ventral mesencephalon is an important determinant for recovery of motor function in a rat model of Parkinson’s disease. Brain 133, 482–495 (2010).
pubmed: 20123725
pmcid: 2822634
doi: 10.1093/brain/awp328
Thompson, L., Barraud, P., Andersson, E., Kirik, D. & Björklund, A. Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections. J Neurosci. 25, 6467–6477 (2005).
pubmed: 16000637
pmcid: 6725273
doi: 10.1523/JNEUROSCI.1676-05.2005
Fudge, J. L. et al. Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate. Neuropsychopharmacology 42, 1563–1576 (2017).
pubmed: 28220796
pmcid: 5518904
doi: 10.1038/npp.2017.38
Reyes, S. et al. GIRK2 expression in dopamine neurons of the substantia nigra and ventral tegmental area. J Comp Neurol. 520, 2591–2607 (2012).
pubmed: 22252428
doi: 10.1002/cne.23051
Saunders, A. et al. Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain. Cell 174, 1015–1030.e16 (2018).
pubmed: 30096299
pmcid: 6447408
doi: 10.1016/j.cell.2018.07.028
Azcorra, M. et al. Unique functional responses differentially map onto genetic subtypes of dopamine neurons. Nat Neurosci 26, 1762–1774 (2023).
pubmed: 37537242
pmcid: 10545540
doi: 10.1038/s41593-023-01401-9
Dragicevic, E. et al. Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons. Brain 137, 2287–2302 (2014).
pubmed: 24934288
pmcid: 4107734
doi: 10.1093/brain/awu131
Duda, J., Pötschke, C. & Liss, B. Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson’s disease. J Neurochem 139, 156–178 (2016).
pubmed: 26865375
pmcid: 5095868
doi: 10.1111/jnc.13572
Masato, A., Plotegher, N., Boassa, D. & Bubacco, L. Impaired dopamine metabolism in Parkinson’s disease pathogenesis. Molecular Neurodegeneration 2019 14:1 14, 1–21 (2019).
Mathiharan, Y. K. et al. Structural insights into GIRK2 channel modulation by cholesterol and PIP 2. Cell Rep. 36, 109619 (2021).
pubmed: 34433062
pmcid: 8436891
doi: 10.1016/j.celrep.2021.109619
Chan, C. S. et al. ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447, 1081–1086 (2007).
pubmed: 17558391
doi: 10.1038/nature05865
Li, H. et al. Generation of human A9 dopaminergic pacemakers from induced pluripotent stem cells. Mol Psychiatry 27, 4407–4418 (2022).
pubmed: 35610351
pmcid: 9684358
doi: 10.1038/s41380-022-01628-1
McCaffery, P. & Drager, U. C. High levels of a retinoic acid-generating dehydrogenase in the meso-telencephalic dopamine system. Proc Natl Acad Sci USA 91, 7772–7776 (1994).
pubmed: 8052659
pmcid: 44484
doi: 10.1073/pnas.91.16.7772
Grimm, J., Mueller, A., Hefti, F. & Rosenthal, A. Molecular basis for catecholaminergic neuron diversity. Proc Natl Acad Sci USA 101, 13891–13896 (2004).
pubmed: 15353588
pmcid: 518849
doi: 10.1073/pnas.0405340101
Cossette, M., Levesque, M., Parent, A., Lévesque, M. & Parent, A. Extrastriatal dopaminergic innervation of human basal ganglia. Neurosci. Res. 34, 51–54 (1999).
pubmed: 10413327
doi: 10.1016/S0168-0102(99)00029-2
Prensa, L., Cossette, M. & Parent, A. Dopaminergic innervation of human basal ganglia. J Chem Neuroanat 20, 207–213 (2000).
pubmed: 11207419
doi: 10.1016/S0891-0618(00)00099-5
Smith, Y., Lavoie, B., Dumas, J. & Parent, A. Evidence for a distinct nigropallidal dopaminergic projection in the squirrel monkey. Brain Res. 482, 381–386 (1989).
pubmed: 2565144
doi: 10.1016/0006-8993(89)91205-5
Haber, S. N. & Fudge, J. L. The primate substantia nigra and VTA: integrative circuitry and function. Crit Rev Neurobiol 11, 323–342 (1997).
pubmed: 9336716
doi: 10.1615/CritRevNeurobiol.v11.i4.40
Parent, A., Lavoie, B., Smith, Y. & Bédard, P. The dopaminergic nigropallidal projection in primates: distinct cellular origin and relative sparing in MPTP-treated monkeys. Adv. Neurol. 53, 111–116 (1990).
pubmed: 1978512
Gagnon, D. et al. Evidence for Sprouting of Dopamine and Serotonin Axons in the Pallidum of Parkinsonian Monkeys. Front Neuroanat 12, 1–14 (2018).
doi: 10.3389/fnana.2018.00038
Sgobio, C. et al. Aldehyde dehydrogenase 1-positive nigrostriatal dopaminergic fibers exhibit distinct projection pattern and dopamine release dynamics at mouse dorsal striatum. Sci Rep 7, (2017).
Poulin, J.-F. et al. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat Neurosci. 21, 1260–1271 (2018).
pubmed: 30104732
pmcid: 6342021
doi: 10.1038/s41593-018-0203-4
del Rey, N. L. G. & García-Cabezas, M. Á. Cytology, architecture, development, and connections of the primate striatum: Hints for human pathology. Neurobiol. Dis. 176, (2023).
Masato, A. et al. DOPAL initiates αSynuclein-dependent impaired proteostasis and degeneration of neuronal projections in Parkinson’s disease. NPJ Parkinsons Dis. 9, (2023).
Crittenden, J. R., Yoshida, T., Venu, S., Mahar, A. & Graybiel, A. M. Cannabinoid Receptor 1 Is Required for Neurodevelopment of Striosome-Dendron Bouquets. eNeuro 9, (2022).
Davis, M. I. et al. The cannabinoid-1 receptor is abundantly expressed in striatal striosomes and striosome-dendron bouquets of the substantia nigra. PLoS One 13, e0191436 (2018).
pubmed: 29466446
pmcid: 5821318
doi: 10.1371/journal.pone.0191436
Evans, R. C. et al. Functional Dissection of Basal Ganglia Inhibitory Inputs onto Substantia Nigra Dopaminergic Neurons. Cell Rep 32, 108156 (2020).
pubmed: 32937133
pmcid: 9887718
doi: 10.1016/j.celrep.2020.108156
Golden, J. P. et al. Dopamine-Dependent Compensation Maintains Motor Behavior in Mice with Developmental Ablation of Dopaminergic Neurons. Journal of Neuroscience 33, 17095–17107 (2013).
pubmed: 24155314
doi: 10.1523/JNEUROSCI.0890-13.2013
González-Rodríguez, P. et al. Disruption of mitochondrial complex I induces progressive parkinsonism. Nature 599, 650–656 (2021).
pubmed: 34732887
pmcid: 9189968
doi: 10.1038/s41586-021-04059-0
Delignat-Lavaud, B. et al. Synaptotagmin-1-dependent phasic axonal dopamine release is dispensable for basic motor behaviors in mice. Nat Commun 14, 4120 (2023).
pubmed: 37433762
pmcid: 10336101
doi: 10.1038/s41467-023-39805-7
Obeso, J. A., Rodriguez-Oroz, M. C., Lanciego, J. L., Diaz, M. R. & Rodriguez Diaz, M. How does Parkinson’s disease begin? The role of compensatory mechanisms. Trends Neurosci 27, 125–128 (2004).
pubmed: 15036875
doi: 10.1016/j.tins.2003.12.006
Blesa, J. et al. Compensatory mechanisms in Parkinson’s disease: Circuits adaptations and role in disease modification. Exp Neurol 298, 148–161 (2017).
pubmed: 28987461
doi: 10.1016/j.expneurol.2017.10.002
Evans, R. C. Dendritic involvement in inhibition and disinhibition of vulnerable dopaminergic neurons in healthy and pathological conditions. Neurobiol Dis 172, (2022).
Zhai, S., Cui, Q., Simmons, D. N. V. & Surmeier, D. J. Distributed dopaminergic signaling in the basal ganglia and its relationship to motor disability in Parkinson’s disease. Curr Opin Neurobiol 83, 102798 (2023).
pubmed: 37866012
doi: 10.1016/j.conb.2023.102798
Bezard, E., Porras, C. G., Blesa, J. & Obeso, J. A. Compensatory mechanisms in experimental and human parkinsonism: potencial for new therapies. in Handbook of Basal Ganglia Structure and Function: A Decade of Progress (eds. Steiner, H. & Tseng, H. M.) (Elsevier, San Diego, 2009).
Covey, D. P., Mateo, Y., Sulzer, D., Cheer, J. F. & Lovinger, D. M. Endocannabinoid modulation of dopamine neurotransmission. Neuropharmacology 124, 52 (2017).
pubmed: 28450060
pmcid: 5608040
doi: 10.1016/j.neuropharm.2017.04.033
Liu, Z. et al. Deficiency in endocannabinoid synthase DAGLB contributes to early onset Parkinsonism and murine nigral dopaminergic neuron dysfunction. Nat Commun 13, (2022).
Mailleux, P. & Vanderhaeghen, J. J. Localization of cannabinoid receptor in the human developing and adult basal ganglia. Higher levels in the striatonigral neurons. Neurosci Lett 148, 173–176 (1992).
pubmed: 1300492
doi: 10.1016/0304-3940(92)90832-R
Wallmichrath, I. & Szabo, B. Cannabinoids inhibit striatonigral GABAergic neurotransmission in the mouse. Neuroscience 113, 671–682 (2002).
pubmed: 12150787
doi: 10.1016/S0306-4522(02)00109-4
Szabo, B., Wallmichrath, I., Mathonia, P. & Pfreundtner, C. Cannabinoids inhibit excitatory neurotransmission in the substantia nigra pars reticulata. Neuroscience 97, 89–97 (2000).
pubmed: 10771342
doi: 10.1016/S0306-4522(00)00036-1
Henny, P. et al. Structural correlates of heterogeneous in vivo activity of midbrain dopaminergic neurons. Nat. Neurosci. 15, 613 (2012).
pubmed: 22327472
pmcid: 4242968
doi: 10.1038/nn.3048
Mena-Segovia, J., Winn, P. & Bolam, J. P. Cholinergic modulation of midbrain dopaminergic systems. Brain Res. Rev. 58, 265–271 (2008).
pubmed: 18343506
doi: 10.1016/j.brainresrev.2008.02.003
Rodriguez, M. C., Obeso, J. A. & Olanow, C. W. Subthalamic nucleus-mediated excitotoxicity in Parkinson’s disease: a target for neuroprotection. Ann. Neurol. 44, S175–S188 (1998).
pubmed: 9749591
doi: 10.1002/ana.410440726
Pacelli, C. et al. Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr. Biol. 25, 2349–2360 (2015).
pubmed: 26320949
doi: 10.1016/j.cub.2015.07.050
Carmichael, K. et al. Function and Regulation of ALDH1A1-Positive Nigrostriatal Dopaminergic Neurons in Motor Control and Parkinson’s Disease. Front Neural Circuits 15, (2021).
Graybiel, A. M. & Matsushima, A. Striosomes and matrisomes: Scaffolds for dynamic coupling of Volition and Action. Annu. Rev. Neurosci. 46, (2023).
Janssen, P. et al. Visualizing advances in the future of primate neuroscience research. Curr. Res. Neurobiol. 4, (2022).
Blesa, J. et al. Inter-hemispheric asymmetry of nigrostriatal dopaminergic lesion: a possible compensatory mechanism in Parkinson’s disease. Front Syst. Neurosci. 5, 92 (2011).
pubmed: 22287944
pmcid: 3258666
doi: 10.3389/fnsys.2011.00092
Rey, N. L.-G. del, Trigo-Damas, I., Obeso, J. A., Cavada, C. & Blesa, J. Neuron types in the primate striatum: stereological analysis of projection neurons and interneurons in control and parkinsonian monkeys. Neuropathol. Appl. Neurobiol. https://doi.org/10.1111/NAN.12812 (2022).
Jiménez-Sánchez, L. et al. Serotonergic innervation of the striatum in a nonhuman primate model of Parkinson’s disease. Neuropharmacology 170, (2020).
Kurlan, R., Kim, M. H. H. & Gash, D. M. M. The time course and magnitude of spontaneous recovery of parkinsonism produced by intracarotid administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to monkeys. Ann. Neurol. 29, 677–679 (1991).
pubmed: 1892370
doi: 10.1002/ana.410290618
Potts, L. F. et al. Modeling Parkinson’s disease in monkeys for translational studies, a critical analysis. Exp. Neurol. 0, 133 (2014).
doi: 10.1016/j.expneurol.2013.09.014
Mounayar, S. et al. A new model to study compensatory mechanisms in MPTP-treated monkeys exhibiting recovery. Brain 130, 2898–2914 (2007).
pubmed: 17855373
doi: 10.1093/brain/awm208
Szabo, J. & Cowan, W. M. A stereotaxic atlas of the brain of the cynomolgus monkey (Macaca fascicularis). J. Comparat. Neurol. 222, 265–300 (1984).
doi: 10.1002/cne.902220208
Lanciego, J. L. & Vázquez, A. The basal ganglia and thalamus of the long-tailed macaque in stereotaxic coordinates. A template atlas based on coronal, sagittal and horizontal brain sections. Brain Struct. Funct. 217, 613–666 (2012).
pubmed: 22179107
doi: 10.1007/s00429-011-0370-5
Sánchez-González, M. A. et al. The primate thalamus is a key target for brain dopamine. J. Neurosci. 25, 6076–6083 (2005).
pubmed: 15987937
pmcid: 6725054
doi: 10.1523/JNEUROSCI.0968-05.2005
Monje, M. H. G., Blesa, J., García-Cabezas, M. Á., Obeso, J. A. & Cavada, C. Changes in thalamic dopamine innervation in a progressive Parkinson’s disease model in monkeys. Mov. Disorders 35, 419–430 (2020).
doi: 10.1002/mds.27921
Gundersen, H. J. G. G. & Jensen, E. B. The efficiency of systematic sampling in stereology and its prediction. J. Microsc. 147, 229–263 (1987).
pubmed: 3430576
doi: 10.1111/j.1365-2818.1987.tb02837.x
West, M. J. Space balls revisited: stereological estimates of length with virtual isotropic surface probes. Front Neuroanat. 12, 1–6 (2018).
doi: 10.3389/fnana.2018.00049
Paxinos, G., Huang, X.-F. & Toga, A. The Rhesus Monkey Brain in Stereotaxic Coordinates. Faculty of Health and Behavioural Sciences - Papers (Archive) (2000).