Host attraction and host feeding patterns indicate generalist feeding of Culex pipiens s.s. and Cx. torrentium.
Culex pipiens biotype molestus
Culex pipiens biotype pipiens
Culex pipiens hybrid biotype pipiens × molestus
Culex torrentium
Host attraction
Host feeding patterns
Mosquito
Journal
Parasites & vectors
ISSN: 1756-3305
Titre abrégé: Parasit Vectors
Pays: England
ID NLM: 101462774
Informations de publication
Date de publication:
30 Aug 2024
30 Aug 2024
Historique:
received:
10
04
2024
accepted:
07
08
2024
medline:
31
8
2024
pubmed:
31
8
2024
entrez:
30
8
2024
Statut:
epublish
Résumé
Mosquito host feeding patterns are an important factor of the species-specific vector capacity determining pathogen transmission routes. Culex pipiens s.s./Cx. torrentium are competent vectors of several arboviruses, such as West Nile virus and Usutu virus. However, studies on host feeding patterns rarely differentiate the morphologically indistinguishable females. We analyzed the host feeding attraction of Cx. pipiens and Cx. torrentium in host-choice studies for bird, mouse, and a human lure. In addition, we summarized published and unpublished data on host feeding patterns of field-collected specimens from Germany, Iran, and Moldova from 2012 to 2022, genetically identified as Cx. pipiens biotype pipiens, Cx. pipiens biotype molestus, Cx. pipiens hybrid biotype pipiens × molestus, and Cx. torrentium, and finally put the data in context with similar data found in a systematic literature search. In the host-choice experiments, we did not find a significant attraction to bird, mouse, and human lure for Cx. pipiens pipiens and Cx. torrentium. Hosts of 992 field-collected specimens were identified for Germany, Iran, and Moldova, with the majority determined as Cx. pipiens pipiens, increasing the data available from studies known from the literature by two-thirds. All four Culex pipiens s.s./Cx. torrentium taxa had fed with significant proportions on birds, humans, and nonhuman mammals. Merged with the data from the literature from 23 different studies showing a high prevalence of blood meals from birds, more than 50% of the blood meals of Cx. pipiens s.s. were identified as birds, while up to 39% were human and nonhuman mammalian hosts. Culex torrentium fed half on birds and half on mammals. However, there were considerable geographical differences in the host feeding patterns. In the light of these results, the clear characterization of the Cx. pipiens s.s./Cx. torrentium taxa as ornithophilic/-phagic or mammalophilic/-phagic needs to be reconsidered. Given their broad host ranges, all four Culex taxa could potentially serve as enzootic and bridge vectors.
Sections du résumé
BACKGROUND
BACKGROUND
Mosquito host feeding patterns are an important factor of the species-specific vector capacity determining pathogen transmission routes. Culex pipiens s.s./Cx. torrentium are competent vectors of several arboviruses, such as West Nile virus and Usutu virus. However, studies on host feeding patterns rarely differentiate the morphologically indistinguishable females.
METHODS
METHODS
We analyzed the host feeding attraction of Cx. pipiens and Cx. torrentium in host-choice studies for bird, mouse, and a human lure. In addition, we summarized published and unpublished data on host feeding patterns of field-collected specimens from Germany, Iran, and Moldova from 2012 to 2022, genetically identified as Cx. pipiens biotype pipiens, Cx. pipiens biotype molestus, Cx. pipiens hybrid biotype pipiens × molestus, and Cx. torrentium, and finally put the data in context with similar data found in a systematic literature search.
RESULTS
RESULTS
In the host-choice experiments, we did not find a significant attraction to bird, mouse, and human lure for Cx. pipiens pipiens and Cx. torrentium. Hosts of 992 field-collected specimens were identified for Germany, Iran, and Moldova, with the majority determined as Cx. pipiens pipiens, increasing the data available from studies known from the literature by two-thirds. All four Culex pipiens s.s./Cx. torrentium taxa had fed with significant proportions on birds, humans, and nonhuman mammals. Merged with the data from the literature from 23 different studies showing a high prevalence of blood meals from birds, more than 50% of the blood meals of Cx. pipiens s.s. were identified as birds, while up to 39% were human and nonhuman mammalian hosts. Culex torrentium fed half on birds and half on mammals. However, there were considerable geographical differences in the host feeding patterns.
CONCLUSIONS
CONCLUSIONS
In the light of these results, the clear characterization of the Cx. pipiens s.s./Cx. torrentium taxa as ornithophilic/-phagic or mammalophilic/-phagic needs to be reconsidered. Given their broad host ranges, all four Culex taxa could potentially serve as enzootic and bridge vectors.
Identifiants
pubmed: 39215365
doi: 10.1186/s13071-024-06439-7
pii: 10.1186/s13071-024-06439-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
369Informations de copyright
© 2024. The Author(s).
Références
Lyimo IN, Ferguson HM. Ecological and evolutionary determinants of host species choice in mosquito vectors. Trends Parasitol. 2009;25:189–96.
pubmed: 19269900
doi: 10.1016/j.pt.2009.01.005
Mukabana WR, Takken W, Knols BGJ. Analysis of arthropod bloodmeals using molecular genetic markers. Trends Parasitol. 2002;18:505–9.
pubmed: 12473367
doi: 10.1016/S1471-4922(02)02364-4
Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol. 2006;4:e82.
pubmed: 16494532
pmcid: 1382011
doi: 10.1371/journal.pbio.0040082
Thiemann TC, Wheeler SS, Barker CM, Reisen WK. Mosquito host selection varies seasonally with host availability and mosquito density. PLoS Negl Trop Dis. 2011;5:e1452.
pubmed: 22206038
pmcid: 3243726
doi: 10.1371/journal.pntd.0001452
Takken W, Verhulst NO. Host preferences of blood-feeding mosquitoes. Annu Rev Entomol. 2013;58:433–53.
pubmed: 23020619
doi: 10.1146/annurev-ento-120811-153618
Crans W. The blood feeding habits of Culex territans Walker. Mosq News. 1970;30:445–7.
Camp JV, Bakonyi T, Soltész Z, Zechmeister T, Nowotny N. Uranotaenia unguiculata Edwards, 1913 are attracted to sound, feed on amphibians, and are infected with multiple viruses. Parasit Vectors. 2018;11:456.
pubmed: 30081963
pmcid: 6090806
doi: 10.1186/s13071-018-3030-2
Rizzoli A, Bolzoni L, Chadwick EA, Capelli G, Montarsi F, Grisenti M, et al. Understanding West Nile virus ecology in Europe: Culex pipiens host feeding preference in a hotspot of virus emergence. Parasit Vectors. 2015;8:213.
pubmed: 25888754
pmcid: 4411713
doi: 10.1186/s13071-015-0831-4
Egas M, Dieckmann U, Sabelis MW. Evolution restricts the coexistence of specialists and generalists: the role of trade-off structure. Am Nat. 2004;163:518–31.
pubmed: 15122500
doi: 10.1086/382599
Lundström JO, Hesson JC, Schäfer ML, Östman Ö, Semmler T, Bekaert M, et al. Sindbis virus polyarthritis outbreak signalled by virus prevalence in the mosquito vectors. PLoS Negl Trop Dis. 2019;13:e0007702.
pubmed: 31465453
pmcid: 6738656
doi: 10.1371/journal.pntd.0007702
Börstler J, Lühken R, Rudolf M, Steinke S, Melaun C, Becker S, et al. The use of morphometric wing characters to discriminate female Culex pipiens and Culex torrentium. J Vector Ecol. 2014;39:204–12.
pubmed: 24820574
doi: 10.1111/j.1948-7134.2014.12088.x
Rudolf M, Czajka C, Börstler J, Melaun C, Jöst H, von Thien H, et al. First nationwide surveillance of Culex pipiens complex and Culex torrentium mosquitoes demonstrated the presence of Culex pipiens biotype pipiens/molestus hybrids in Germany. PLoS ONE. 2013;8:e71832.
pubmed: 24039724
pmcid: 3770594
doi: 10.1371/journal.pone.0071832
Hesson JC, Rettich F, Merdić E, Vignjević G, Ostman O, Schäfer M, et al. The arbovirus vector Culex torrentium is more prevalent than Culex pipiens in northern and central Europe. Med Vet Entomol. 2014;28:179–86.
pubmed: 23947434
doi: 10.1111/mve.12024
Becker N, Jöst A, Weitzel T. The Culex pipiens complex in Europe. J Am Mosq Control Assoc. 2012;28:53–67.
pubmed: 23401944
doi: 10.2987/8756-971X-28.4s.53
Sauer FG, Lange U, Schmidt-Chanasit J, Kiel E, Wiatrowska B, Myczko Ł, et al. Overwintering Culex torrentium in abandoned animal burrows as a reservoir for arboviruses in Central Europe. One Health. 2023;16:100572.
pubmed: 37363228
pmcid: 10288133
doi: 10.1016/j.onehlt.2023.100572
Zittra C, Flechl E, Kothmayer M, Vitecek S, Rossiter H, Zechmeister T, et al. Ecological characterization and molecular differentiation of Culex pipiens complex taxa and Culex torrentium in eastern Austria. Parasites Vectors. 2016;9:197.
pubmed: 27067139
pmcid: 4828795
doi: 10.1186/s13071-016-1495-4
Gomes B, Sousa CA, Vicente JL, Pinho L, Calderón I, Arez E, et al. Feeding patterns of molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in a region of high hybridization. Parasites Vectors. 2013;6:93.
pubmed: 23578139
pmcid: 3637809
doi: 10.1186/1756-3305-6-93
Tiron GV, Stancu IG, Dinu S, Prioteasa FL, Fălcuță E, Ceianu CS, et al. Characterization and host-feeding patterns of Culex pipiens s.l. taxa in a West Nile virus-endemic area in Southeastern Romania. Vector Borne Zoonotic Dis. 2021;21:713–9.
pubmed: 34160283
doi: 10.1089/vbz.2020.2739
Fikrig K, Harrington LC. Understanding and interpreting mosquito blood feeding studies: the case of Aedes albopictus. Trends Parasitol. 2021;37:959–75.
pubmed: 34497032
doi: 10.1016/j.pt.2021.07.013
Hesson JC, Schäfer M, Lundström JO. First report on human-biting Culex pipiens in Sweden. Parasites Vectors. 2016;9:632.
pubmed: 27927233
pmcid: 5142352
doi: 10.1186/s13071-016-1925-3
Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, Fonseca DM. Genetic influences on mosquito feeding behavior and the emergence of zoonotic pathogens. Am J Trop Med Hyg. 2007;77:667–71.
pubmed: 17978068
doi: 10.4269/ajtmh.2007.77.667
Börstler J, Jöst H, Garms R, Krüger A, Tannich E, Becker N, et al. Host-feeding patterns of mosquito species in Germany. Parasites Vectors. 2016;9:318.
pubmed: 27259984
pmcid: 4893232
doi: 10.1186/s13071-016-1597-z
Shahhosseini N, Friedrich J, Moosa-Kazemi SH, Sedaghat MM, Kayedi MH, Tannich E, et al. Host-feeding patterns of Culex mosquitoes in Iran. Parasites Vectors. 2018;11:669.
pubmed: 30587194
pmcid: 6307250
doi: 10.1186/s13071-018-3237-2
Tomazatos A, Jansen S, Pfister S, Török E, Maranda I, Horváth C, et al. Ecology of West Nile Virus in the Danube Delta, Romania: phylogeography, xenosurveillance and mosquito host-feeding patterns. Viruses. 2019;11:1159.
pubmed: 31847345
pmcid: 6950446
doi: 10.3390/v11121159
Martínez-de la Puente J, Ferraguti M, Ruiz S, Roiz D, Soriguer RC, Figuerola J. Culex pipiens forms and urbanization: effects on blood feeding sources and transmission of avian Plasmodium. Malar J. 2016;15:589.
pubmed: 27931226
pmcid: 5146868
doi: 10.1186/s12936-016-1643-5
Jansen S, Heitmann A, Lühken R, Leggewie M, Helms M, Badusche M, et al. Culex torrentium: a potent vector for the transmission of West Nile virus in Central Europe. Viruses. 2019;11:492.
pubmed: 31146418
pmcid: 6630772
doi: 10.3390/v11060492
Jansen S, Lühken R, Helms M, Pluskota B, Pfitzner WP, Oerther S, et al. Vector competence of mosquitoes from Germany for Sindbis virus. Viruses. 2022;14:2644.
pubmed: 36560650
pmcid: 9785343
doi: 10.3390/v14122644
Fros JJ, Miesen P, Vogels CB, Gaibani P, Sambri V, Martina BE, et al. Comparative Usutu and West Nile virus transmission potential by local Culex pipiens mosquitoes in north-western Europe. One Health. 2015;1:31–6.
pubmed: 28616462
pmcid: 5441354
doi: 10.1016/j.onehlt.2015.08.002
Holicki CM, Scheuch DE, Ziegler U, Lettow J, Kampen H, Werner D, et al. German Culex pipiens biotype molestus and Culex torrentium are vector-competent for Usutu virus. Parasites Vectors. 2020;13:625.
pubmed: 33380339
pmcid: 7774236
doi: 10.1186/s13071-020-04532-1
Jansen S, Heitmann A, Uusitalo R, Korhonen EM, Lühken R, Kliemke K, et al. Vector competence of Northern European Culex pipiens biotype pipiens and Culex torrentium to West Nile virus and Sindbis virus. Viruses. 2023;15:392.
doi: 10.3390/v15030592
Shahhosseini N, Chinikar S, Moosa-Kazemi SH, Sedaghat MM, Kayedi MH, Lühken R, et al. West Nile Virus lineage-2 in Culex specimens from Iran. Trop Med Int Health. 2017;22:1343–9.
pubmed: 28746985
doi: 10.1111/tmi.12935
Jöst H, Bialonski A, Maus D, Sambri V, Eiden M, Groschup MH, et al. Isolation of Usutu virus in Germany. Am J Trop Med Hyg. 2011;85:551–3.
pubmed: 21896821
pmcid: 3163883
doi: 10.4269/ajtmh.2011.11-0248
Wehmeyer ML, Tolsá-García MJ, Sauer FG, Schmidt-Chanasit J, Roiz D, Lühken R. Global database of mosquito host feeding patterns. 2024. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4661866 .
Lepore TJ, Pollack RJ, Spielman A, Reiter P. A readily constructed lard-can trap for sampling host-seeking mosquitoes. J Am Mosq Control Assoc. 2004;20:321–2.
pubmed: 15532937
Reeves LE, Gillett-Kaufman JL, Kawahara AY, Kaufman PE. Barcoding blood meals: new vertebrate-specific primer sets for assigning taxonomic identities to host DNA from mosquito blood meals. PLoS Negl Trop Dis. 2018;12:e0006767.
pubmed: 30161128
pmcid: 6135518
doi: 10.1371/journal.pntd.0006767
Jaworski L, Sauer F, Jansen S, Tannich E, Schmidt-Chanasit J, Kiel E, et al. Artificial resting sites: an alternative sampling method for adult mosquitoes. Med Vet Entomol. 2022;36:139–48.
pubmed: 34825399
doi: 10.1111/mve.12559
Becker N, Petrić D, Zgomba M, Boase C, Madon MB, Dahl C, et al. Mosquitoes: identification ecology and control. Cham: Springer Nature; 2020.
doi: 10.1007/978-3-030-11623-1
Kitano T, Umetsu K, Tian W, Osawa M. Two universal primer sets for species identification among vertebrates. Int J Legal Med. 2007;121:423–7.
pubmed: 16845543
doi: 10.1007/s00414-006-0113-y
Burkett-Cadena ND, Graham SP, Hassan HK, Guyer C, Eubanks MD, Katholi CR, et al. Blood feeding patterns of potential arbovirus vectors of the genus Culex targeting ectothermic hosts. Am J Trop Med Hyg. 2008;79:809–15.
pubmed: 18981528
doi: 10.4269/ajtmh.2008.79.809
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.
pubmed: 22543367
pmcid: 3371832
doi: 10.1093/bioinformatics/bts199
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2022. Available from: https://www.R-project.org/ .
Wickham H, François R, Henry L, Müller K, Vaughan D. dplyr: a grammar of data manipulation. 2023. Available from: https://CRAN.R-project.org/package=dplyr .
Wickham H. ggplot2. Cham: Springer International Publishing; 2016.
doi: 10.1007/978-3-319-24277-4
Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome to the tidyverse. J Open Sour Softw. 2019;4:1686. https://doi.org/10.21105/joss.01686 .
doi: 10.21105/joss.01686
Wickham H, Bryan J. readxl: read excel files. 2023. Available from: https://CRAN.R-project.org/package=readxl .
Wickham H. stringr: simple, consistent wrappers for common string operations. 2022. Available from: https://CRAN.R-project.org/package=stringr .
Wickham H. The Split-apply-combine strategy for data analysis. J Statis Softw. 2011;40:1–29.
Bache SM, Wickham H. magrittr: A forward-pipe operator for R. 2022. Available from: https://CRAN.R-project.org/package=magrittr .
Savage HM, Aggarwal D, Apperson CS, Katholi CR, Gordon E, Hassan HK, et al. Host choice and West Nile virus infection rates in blood-fed mosquitoes, including members of the Culex pipiens complex, from Memphis and Shelby County, Tennessee, 2002–2003. Vector Borne Zoonotic Dis. 2007;7:365–86.
pubmed: 17767413
doi: 10.1089/vbz.2006.0602
Faraji A, Egizi A, Fonseca DM, Unlu I, Crepeau T, Healy SP, et al. Comparative host feeding patterns of the Asian tiger mosquito, Aedes albopictus, in urban and suburban Northeastern USA and implications for disease transmission. PLoS Negl Trop Dis. 2014;8:e3037.
pubmed: 25101969
pmcid: 4125227
doi: 10.1371/journal.pntd.0003037
Kothera L, Mutebi J-P, Kenney JL, Saxton-Shaw K, Ward MP, Savage HM. Bloodmeal, host selection, and genetic admixture analyses of Culex pipiens complex (Diptera: Culicidae) mosquitoes in Chicago, IL. J Med Entomol. 2020;57:78–87.
pubmed: 31576405
doi: 10.1093/jme/tjz158
Nelms BM, Thiemann T, Macedo PA, Savage HM, Kothera L, Reisen WK. Phenotypic variation among Culex pipiens complex (Diptera: Culicidae) populations from the Sacramento valley, California: horizontal and vertical transmission of West Nile virus, diapause potential, autogeny, and host selection. Am J Trop Med Hyg. 2013;89:1168–78.
pubmed: 24043690
pmcid: 3854895
doi: 10.4269/ajtmh.13-0219
Briggs C, Osman R, Newman BC, Fikrig K, Danziger PR, Mader EM, et al. Utilization of a zoo for mosquito (Diptera: Culicidae) diversity analysis, arboviral surveillance, and blood feeding patterns. J Med Entomol. 2023;60:1406–17.
pubmed: 37643730
doi: 10.1093/jme/tjad111
Sawabe K, Isawa H, Hoshino K, Sasaki T, Roychoudhury S, Higa Y, et al. Host-feeding habits of Culex pipiens and Aedes albopictus (Diptera: Culicidae) collected at the urban and suburban residential areas of Japan. J Med Entomol. 2010;47:442–50.
pubmed: 20496592
doi: 10.1093/jmedent/47.3.442
Kim KS, Tsuda Y, Yamada A. Bloodmeal identification and detection of avian malaria parasite from mosquitoes (Diptera: Culicidae) inhabiting coastal areas of Tokyo Bay, Japan. J Med Entomol. 2009;46:1230–4.
pubmed: 19769059
doi: 10.1603/033.046.0535
Ejiri H, Sato Y, Kim K-S, Hara T, Tsuda Y, Imura T, et al. Entomological study on transmission of avian malaria parasites in a zoological garden in Japan: bloodmeal identification and detection of avian malaria parasite DNA from blood-fed mosquitoes. J Med Entomol. 2011;48:600–7.
pubmed: 21661321
doi: 10.1603/ME10197
Inumaru M, Matsumoto N, Nakano Y, Sato T, Tsuda Y, Sato Y. Species composition and feeding behaviors of vector mosquitoes of avian infectious diseases at a wild bird rehabilitation facility in Japan. J Wildl Dis. 2024;60:621–33.
pubmed: 38769632
doi: 10.7589/JWD-D-23-00142
Alcaide M, Rico C, Ruiz S, Soriguer R, Muñoz J, Figuerola J. Disentangling vector-borne transmission networks: a universal DNA barcoding method to identify vertebrate hosts from arthropod bloodmeals. PLoS ONE. 2009;4:e7092.
pubmed: 19768113
pmcid: 2740869
doi: 10.1371/journal.pone.0007092
Mora-Rubio C, Ferraguti M, Magallanes S, Bravo-Barriga D, Hernandez-Caballero I, Marzal A, de Lope F. Unravelling the mosquito haemosporidian parasite bird host network in the southwestern Iberian Peninsula: insights into malaria infections, mosquito community and feeding preferences. Parasit Vectors. 2023;16:395.
pubmed: 37915080
pmcid: 10619300
doi: 10.1186/s13071-023-05964-1
Jansen CC, Zborowski P, Graham GC, Webb CE, Russell RC, Craig SB, et al. Blood sources of mosquitoes collected from urban and peri-urban environments in eastern Australia with species-specific molecular analysis of avian blood meals. Am J Trop Med Hyg. 2009;81:849–57.
pubmed: 19861621
doi: 10.4269/ajtmh.2009.09-0008
Flies EJ, Flies AS, Fricker SR, Weinstein P, Williams CR. Regional comparison of mosquito bloodmeals in south Australia: implications for Ross River virus ecology. J Med Entomol. 2016;53:902–10.
pubmed: 27113100
doi: 10.1093/jme/tjw035
Osório HC, Zé-zé L, Amaro F, Nunes A, Alves MJ. Sympatric occurrence of Culex pipiens (Diptera, Culicidae) biotypes pipiens, molestus and their hybrids in Portugal, Western Europe: feeding patterns and habitat determinants. Med Vet Entomol. 2014;28:103–9.
pubmed: 23786327
doi: 10.1111/mve.12020
Brugman VA, Hernández-Triana LM, England ME, Medlock JM, Mertens PPC, Logan JG, et al. Blood-feeding patterns of native mosquitoes and insights into their potential role as pathogen vectors in the Thames estuary region of the United Kingdom. Parasites Vectors. 2017;10:163.
pubmed: 28347323
pmcid: 5369192
doi: 10.1186/s13071-017-2098-4
Hernandez-Colina A, Gonzalez-Olvera M, Lomax E, Townsend F, Maddox A, Hesson JC, et al. Blood-feeding ecology of mosquitoes in two zoological gardens in the United Kingdom. Parasites Vectors. 2021;14:249.
pubmed: 34016159
pmcid: 8139098
doi: 10.1186/s13071-021-04735-0
Cardo MV, Carbajo AE, Mozzoni C, Kliger M, Vezzani D. Blood feeding patterns of the Culex pipiens complex in equestrian land uses and their implications for arboviral encephalitis risk in temperate Argentina. Zoonoses Public Health. 2023;70:256–68.
pubmed: 36575644
doi: 10.1111/zph.13021
Shahhosseini N, Moosa-Kazemi SH, Sedaghat MM, Wong G, Chinikar S, Hajivand Z, et al. Autochthonous transmission of West Nile virus by a new vector in Iran, vector-host interaction modeling and virulence gene determinants. Viruses. 2020;12:1449.
pubmed: 33339336
pmcid: 7766443
doi: 10.3390/v12121449
Blom R, Krol L, Langezaal M, Schrama M, Trimbos KB, Wassenaar D, et al. Blood-feeding patterns of Culex pipiens biotype pipiens and pipiens/molestus hybrids in relation to avian community composition in urban habitats. Parasites Vectors. 2024;17:95.
pubmed: 38424573
pmcid: 10902945
doi: 10.1186/s13071-024-06186-9
Fyodorova MV, Savage HM, Lopatina JV, Bulgakova TA, Ivanitsky AV, Platonova OV, et al. Evaluation of potential West Nile virus vectors in Volgograd Region, Russia, 2003 (Diptera: Culicidae): species composition, bloodmeal host utilization, and virus infection rates of mosquitoes. J Med Entomol. 2003;43:552–63.
doi: 10.1093/jmedent/43.3.552
Faraji A, Gaugler R. Experimental host preference of diapause and non-diapause induced Culex pipiens pipiens (Diptera: Culicidae). Parasites Vectors. 2015;8:389.
pubmed: 26205410
pmcid: 4512013
doi: 10.1186/s13071-015-1012-1
Fritz ML, Walker ED, Miller JR, Severson DW, Dworkin I. Divergent host preferences of above- and below-ground Culex pipiens mosquitoes and their hybrid offspring. Med Vet Entomol. 2015;29:115–23.
pubmed: 25600086
doi: 10.1111/mve.12096
Harbach RE, Harrison BA, Gad AM. Culex (Culex) molestus Forskål (Diptera: Culicidae): neotype designation, description, variation, and taxonomic status. Proc Entomol Soc Wash. 1984;86:521–42.
Cadar D, Lühken R, van der Jeugd H, Garigliany M, Ziegler U, Keller M, et al. Widespread activity of multiple lineages of Usutu virus, western Europe, 2016. Euro Surveill. 2017;22:30452.
pubmed: 28181903
pmcid: 5388094
doi: 10.2807/1560-7917.ES.2017.22.4.30452
Lühken R, Jöst H, Cadar D, Thomas SM, Bosch S, Tannich E, et al. Distribution of Usutu virus in Germany and its effect on breeding bird populations. Emerg Infect Dis. 2017;23:1994–2001.
pubmed: 29148399
pmcid: 5708248
doi: 10.3201/eid2312.171257
Michel F, Fischer D, Eiden M, Fast C, Reuschel M, Müller K, et al. West Nile virus and Usutu virus monitoring of wild birds in Germany. Int J Environ Res Public Health. 2018;15:171.
pubmed: 29361762
pmcid: 5800270
doi: 10.3390/ijerph15010171
Batson J, Dudas G, Haas-Stapleton E, Kistler AL, Li LM, Logan P, et al. Single mosquito metatranscriptomics identifies vectors, emerging pathogens and reservoirs in one assay. Elife. 2021;10:e68353.
pubmed: 33904402
pmcid: 8110308
doi: 10.7554/eLife.68353