Modified sono-Fenton process for oxidative degradation of chloramphenicol.
Antibiotic chloramphenicol
Fe2O3 nanoparticles
Hydroxylamine
Modified sono-Fenton process
Oxidative degradation
Sodium percarbonate
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
29 Aug 2024
29 Aug 2024
Historique:
received:
26
10
2023
accepted:
23
08
2024
medline:
31
8
2024
pubmed:
31
8
2024
entrez:
29
8
2024
Statut:
aheadofprint
Résumé
Oxidative degradation of chloramphenicol (CAP) using a hybrid approach (US/HA
Identifiants
pubmed: 39210221
doi: 10.1007/s11356-024-34827-0
pii: 10.1007/s11356-024-34827-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ministry of Education and Science of Ukraine
ID : the scientific research project of young scientists - state registration number 0122U000790
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Ammar HB (2016) Sono-Fenton process for metronidazole degradation in aqueous solution: effect of acoustic cavitation and peroxydisulfate anion. Ultrason Sonochem 33:164–169. https://doi.org/10.1016/j.ultsonch.2016.04.035
doi: 10.1016/j.ultsonch.2016.04.035
Bengtsson G, Fronæus S, Bengtsson-Kloo L (2002) The kinetics and mechanism of oxidation of hydroxylamine by iron(III), J. Chem. Soc. Dalton Trans 12:2548–2552. https://doi.org/10.1039/B201602H
doi: 10.1039/B201602H
Cabotaje ACG, Teodoro ACC, Climaco LS, Rubi RVD, Olay JG (2019) Photocatalytic degradation of chloramphenicol using hydroxyapatitederived from egg shells. J BIMP-EAGA Reg Dev 5(2):22–40. https://doi.org/10.51200/jbimpeagard.v5i2.3267
doi: 10.51200/jbimpeagard.v5i2.3267
Cao Y, Qiu W, Zhao Y, Li J, Jiang J, Yang Y, Pang S-Y, Liu G (2020) The degradation of chloramphenicol by O
doi: 10.1016/j.cej.2020.126146
Chen D, Sivakumar M, Ray AK (2000) Heterogeneous photocatalysis in environmental remediation. Dev Chem Eng Mineral Process 8(5/6):505–550. https://doi.org/10.1002/apj.5500080507
doi: 10.1002/apj.5500080507
Chen L, Ma J, Li X, Zhang J, Fang J, Guan Y, Xie P (2011) Strong enhancement on Fenton oxidation by addition of hydroxylamine to accelerate the Ferric and Ferrous iron cycles. Environ Sci Technol 45(9):3925–3930. https://doi.org/10.1021/es2002748
doi: 10.1021/es2002748
Chen L, Li X, Zhang J, Fang J, Huang Y, Wang P, Ma J (2015) Production of hydroxyl radical via the activation of hydrogen peroxide by hydroxylamine. Environ Sci Technol 49(17):10373–10379. https://doi.org/10.1021/acs.est.5b00483
doi: 10.1021/acs.est.5b00483
Cheng F, Zhou P, Liu Y, Huo X, Zhang J, Yuan Y, Zhang H, Lai B, Zhang Y (2021) Graphene oxide mediated Fe(III) reduction for enhancing Fe(III)/H
doi: 10.1016/j.scitotenv.2021.149097
Dai J, Tian S, Jiang Y, Chang Z, Xie A, Zhang R, Li C, Yan Y (2018) Fe
doi: 10.1021/acs.iecr.7b05300
Dai Z, Liang L, Wang M, Du E (2019) Degradation of DDTs by nano Fe
doi: 10.13671/j.hjkxxb.2018.0449
Danish M, Gu X, Lu S, Xu M, Zhang X, Fu X, Xue Y, Miao Z, Naqvi M, Nasir M (2016) Role of reactive oxygen species and effect of solution matrix in trichloroethylene degradation from aqueous solution by zeolite-supported nano iron as percarbonate activator. Res Chem Intermed 42(9):6959–6973. https://doi.org/10.1007/s11164-016-2509-8
doi: 10.1007/s11164-016-2509-8
Danish M, Gu X, Lu S, Ahmad A, Naqvi M, Farooq U, Zhang X, Fu X, Miao Z, Xue Y (2017) Efficient transformation of trichloroethylene activated through sodium percarbonate using heterogeneous zeolite supported nano zero valent iron-copper bimetallic composite. Chem Eng J 308:396–407. https://doi.org/10.1016/j.cej.2016.09.051
doi: 10.1016/j.cej.2016.09.051
Dindarsafa M, Khataee A, Kaymak B, Vahid B, Karimi A, Rahmani A (2017) Heterogeneous sono-Fenton-like process using martite nanocatalyst prepared by high energy planetary ball milling for treatment of a textile dye. Ultrason Sonochem 34:389–399. https://doi.org/10.1016/j.ultsonch.2016.06.016
doi: 10.1016/j.ultsonch.2016.06.016
Farooq U, Danish M, Lu S, Brusseau ML, Naqvi M, Fu X, Zhang X, Sui Q, Qiu Z (2017a) Efficient transformation in characteristics of cations supported-reduced graphene oxide nanocomposites for the destruction of trichloroethane. Appl Catal A Gener 544:10–20. https://doi.org/10.1016/j.apcata.2017.07.007
doi: 10.1016/j.apcata.2017.07.007
Farooq U, Danish M, Lu S, Naqvi M, Gu X, Fu X, Zhang X, Nasir M (2017b) Synthesis of nZVI@reduced graphene oxide: an efficient catalyst for degradation of 1,1,1-trichloroethane (TCA) in percarbonate system. Res Chem Intermed 43(5):3219–3236. https://doi.org/10.1007/s11164-016-2821-3
doi: 10.1007/s11164-016-2821-3
Farooq U, Wang F, Shang J, Shahid MZ, Akram W, Wang X (2023) Heightening effects of cysteine on degradation of trichloroethylene in Fe
doi: 10.1016/j.cej.2022.139996
Fauzi A, Ratnawulan R (2021) The effect of calcination temperature on the structure of iron oxide phase from west Sumatra. J Phys Conf Ser 1876:012028. https://doi.org/10.1088/1742-6596/1876/1/012028
doi: 10.1088/1742-6596/1876/1/012028
Ferkous H, Hamdaoui O, Merouani S (2015) Sonochemical degradation of naphthol blue black in water: effect of operating parameters. Ultrason Sonochem 26:40–47. https://doi.org/10.1016/j.ultsonch.2015.03.013
doi: 10.1016/j.ultsonch.2015.03.013
Fu X, Gu X, Lu S, Xu M, Miao Z, Zhang X, Zhang Y, Xue Y, Qiu Z, Sui Q (2016) Enhanced degradation of benzene in aqueous solution by sodium percarbonate activated with chelated-Fe(II). Chem Eng J 285:180–188. https://doi.org/10.1016/j.cej.2015.09.112
doi: 10.1016/j.cej.2015.09.112
Fu X, Wei X, Zhang W, Yan W, Wei P, Lyu S (2022) Enhanced effects of reducing agent on oxalate chelated Fe(II) catalyzed percarbonate system for benzene degradation. Water Supply 22(1):208–219. https://doi.org/10.2166/ws.2021.278
doi: 10.2166/ws.2021.278
Gao J, Duan X, O’Shea K, Dionysiou DD (2020) Degradation and transformation of bisphenol A in UV/sodium percarbonate: dual role of carbonate radical anion. Water Res 171:115394. https://doi.org/10.1016/j.watres.2019.115394
doi: 10.1016/j.watres.2019.115394
Gao Y, Yang F, Jian H, Zhen K, Zhang P, Tang X, Fu Z, Xu W, Wang C, Sun H (2021) Pyrene degradation in an aqueous system using ferrous citrate complex activated persulfate over a wide pH range. J Environ Chem Eng 9(6):106733. https://doi.org/10.1016/j.jece.2021.106733
doi: 10.1016/j.jece.2021.106733
Hassanjani-Roshan A, Vaezi MR, Shokuhfar A, Rajabali Z (2011) Synthesis of iron oxide nanoparticles via sonochemical method and their characterization. Particuology 9(1):95–99. https://doi.org/10.1016/j.partic.2010.05.013
doi: 10.1016/j.partic.2010.05.013
Hsueh CL, Huang YH, Wang CC, Chen CY (2005) Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere 58:1409–1414. https://doi.org/10.1016/j.chemosphere.2004.09.091
doi: 10.1016/j.chemosphere.2004.09.091
Huang J, Zhou Z, Danish M, Sui Q, Lyu S (2022a) Synergistic strengthening of SPC/Fe(II) system by CA coupled with mZVI for trichloroethylene degradation in SDS-containing aqueous solution. J Environ Chem Eng 10:108276. https://doi.org/10.1016/j.jece.2022.108276
doi: 10.1016/j.jece.2022.108276
Huang J, Zhou Z, Lyu S (2022b) Comparative study on trichloroethylene degradation enhanced by three organic acid chelating agents in sodium percarbonate/Fe(II) system in the presence of surfactant. J Environ Chem Eng 10:108464. https://doi.org/10.1016/j.jece.2022.108464
doi: 10.1016/j.jece.2022.108464
Karungamye PN (2020) Methods used for removal of pharmaceuticals from wastewater: a review. Appl J Envir Eng Sci 6(4):412–428. https://doi.org/10.48422/IMIST.PRSM/ajees-v6i4.23828
doi: 10.48422/IMIST.PRSM/ajees-v6i4.23828
Kurt A, Mert BK, Özengin N, Sivrioğlu Ö, Yonar T (2017) Treatment of antibiotics in wastewater using advanced oxidation processes (AOPs). In: Farooq R, Ahmad Z (eds) Physico-chemical wastewater treatment and resource recovery. IntechOpen, London, pp 175–211. https://doi.org/10.5772/67538
doi: 10.5772/67538
Lach J (2019) Adsorption of chloramphenicol on commercial and modified activated carbons. Water 11(6):1141. https://doi.org/10.3390/w11061141
doi: 10.3390/w11061141
Lassoued A, Dkhil B, Gadri A, Ammar S (2017) Control of the shape and size of iron oxide (α-Fe
doi: 10.1016/j.rinp.2017.07.066
Li Y, Zhang J, Liu H (2018) Removal of chloramphenicol from aqueous solution using low-cost activated carbon prepared from Typha orientalis, onto powdered activated carbon and its desorption performance by ultrasound. Water 10(4):351. https://doi.org/10.3390/w10040351
doi: 10.3390/w10040351
Li L, Huang J, Hu X, Zhang S, Dai Q, Chai H, Gu L (2019) Activation of sodium percarbonate by vanadium for the degradation of aniline in water: mechanism and identification of reactive species. Chemosphere 215:647–656. https://doi.org/10.1016/j.chemosphere.2018.10.047
doi: 10.1016/j.chemosphere.2018.10.047
Li X, Yang X, Xue H, Pang H, Xu Q (2020) Metal–organic frameworks as a platform for clean energy applications. EnergyChem 2:100027. https://doi.org/10.1016/j.enchem.2020.100027
doi: 10.1016/j.enchem.2020.100027
Li Y, Dong H, Xiao J, Li L, Chu D, Hou X, Xiang S, Dong Q (2022) Insights into a novel CuS/percarbonate/tetraacetylethylenediamine process for sulfamethazine degradation in alkaline medium. J Hazard Mater 435:128999. https://doi.org/10.1016/j.jhazmat.2022.128999
doi: 10.1016/j.jhazmat.2022.128999
Lin K-YA, Lin J-T, Lin Y-F (2017) Heterogeneous catalytic activation of percarbonate by ferrocene for degradation of toxic amaranth dye in water. J Taiwan Inst Chem Eng 78:144–149. https://doi.org/10.1016/j.jtice.2017.05.017
doi: 10.1016/j.jtice.2017.05.017
Lin X, He J, Xu L, Fang Y, Rao G (2020) Degradation of metronidazole by ultrasound-assisted sodium percarbonate activated by ferrous sulfate. Water Pollut Treat 8(3):66–76. https://doi.org/10.12677/wpt.2020.83010
doi: 10.12677/wpt.2020.83010
Liu X, He S, Yang Y, Yao B, Tang Y, Luo L, Zhi D, Wan Z, Wang L, Zhou Y (2021) A review on percarbonate-based advanced oxidation processes for remediation of organic compounds in water. Environ Res 200:111371. https://doi.org/10.1016/j.envres.2021.111371
doi: 10.1016/j.envres.2021.111371
Luo L, Gu C, Li M, Zheng X, Zheng F (2018) Determination of residual 4-nitrobenzaldehyde in chloramphenicol and its pharmaceutical formulation by HPLC with UV/Vis detection after derivatization with 3-nitrophenylhydrazine. J Pharm Biomed Anal 156:307–312. https://doi.org/10.1016/j.jpba.2018.04.024
doi: 10.1016/j.jpba.2018.04.024
Ma C, Yu Z, Wei J, Tan C, Yang X, Wang T, Yu G, Zhang C, Li X (2022) Metal-free ultrathin C
doi: 10.1016/j.apcatb.2022.121951
Melero JA, Martínez F, Molina R (2008) Effect of ultrasound on the properties of heterogeneous catalysts for sono-Fenton oxidation processes. J Adv Oxid Technol 11(1):75–83. https://doi.org/10.1515/jaots-2008-0109
doi: 10.1515/jaots-2008-0109
Meng X, Liu Z, Wang S, Kong F (2021) Synergistic degradation of chloramphenicol by an ultrasound-enhanced Fenton-like sponge iron system. Water 13(24):3561. https://doi.org/10.3390/w13243561
doi: 10.3390/w13243561
Merouani S, Dehane A, Belghit A, Hamdaoui O, Boussalem NEH, Daif H (2022) Removal of persistent textile dyes from wastewater by Fe(II)/H
doi: 10.1039/D2VA00011C
Mohammadi S, Moussavi G, Yaghmaeian K, Giannakis S (2022) Development of a percarbonate-enhanced Vacuum UV process for simultaneous fluoroquinolone antibiotics removal and fecal bacteria inactivation under a continuous flow mode of operation. Chem Eng J 431(2):134064. https://doi.org/10.1016/j.cej.2021.134064
doi: 10.1016/j.cej.2021.134064
Morales-Morales JA (2017) Synthesis of hematite α-Fe
doi: 10.19053/01217488
Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater 98(1–3):33–50. https://doi.org/10.1016/S0304-3894(02)00282-0
doi: 10.1016/S0304-3894(02)00282-0
Nguyen LM, Nguyen NTT, Nguyen NTT, Nguyen TT, Nguyen DTC, Tran TV (2022) Occurrence, toxicity and adsorptive removal of the chloramphenicol antibiotic in water: a review. Environ Chem Lett 20(3):1929–1963. https://doi.org/10.1007/s10311-022-01416-x
doi: 10.1007/s10311-022-01416-x
Oberoi AS, Jia Y, Zhang H, Khanal SK, Lu H (2019) Insights into fate and removal of antibiotics in engineered biological treatment systems: a critical review. Environ Sci Technol 53(13):7234–7264. https://doi.org/10.1021/acs.est.9b01131
doi: 10.1021/acs.est.9b01131
Pimentel JAI, Dong C-D, Garcia-Segura S, Abarca RRM, Chen C-W, de Luna MDG (2021) Degradation of tetracycline antibiotics by Fe
doi: 10.1016/j.scitotenv.2021.146411
Rohana H, Hager-Cohen A, Azrad M, Peretz A (2023) Trend of changes in chloramphenicol resistance during the years 2017–2020: a retrospective report from Israel. Antibiotics 12(2):196. https://doi.org/10.3390/antibiotics12020196
doi: 10.3390/antibiotics12020196
Sukhatskiy YV, Znak ZO, Zin OI (2020) Cavitation and its combinations with other advanced oxidation processes in phenol wastewater treatment: a review. Voprosy Khimii i Khimicheskoi Tekhnologii 4:16–30. https://doi.org/10.32434/0321-4095-2020-131-4-16-30
doi: 10.32434/0321-4095-2020-131-4-16-30
Sukhatskiy Y, Znak Z, Zin O, Chupinskyi D (2021) Ultrasonic cavitation in wastewater treatment from azo dye methyl orange. Chem Chem Technol 15(2):284–290. https://doi.org/10.23939/chcht15.02.284
doi: 10.23939/chcht15.02.284
Sukhatskiy Y, Sozanskyi M, Shepida M, Znak Z, Gogate PR (2022) Decolorization of an aqueous solution of methylene blue using a combination of ultrasound and peroxate process. Sep Purif Technol 288:120651. https://doi.org/10.1016/j.seppur.2022.120651
doi: 10.1016/j.seppur.2022.120651
Sukhatskiy Y, Shepida M, Sozanskyi M, Znak Z, Gogate PR (2023) Periodate-based advanced oxidation processes for wastewater treatment: a review. Sep Purif Technol 304:122305. https://doi.org/10.1016/j.seppur.2022.122305
doi: 10.1016/j.seppur.2022.122305
Sun K, Shi Y, Xu W, Potter N, Li Z, Zhu J (2017) Modification of clays and zeolites by ionic liquids for the uptake of chloramphenicol from water. Chem Eng J 313:336–344. https://doi.org/10.1016/j.cej.2016.12.083
doi: 10.1016/j.cej.2016.12.083
Tang S, Yuan D, Rao Y, Li M, Shi G, Gu J, Zhang T (2019a) Percarbonate promoted antibiotic decomposition in dielectric barrier discharge plasma. J Hazard Mater 366:669–676. https://doi.org/10.1016/j.jhazmat.2018.12.056
doi: 10.1016/j.jhazmat.2018.12.056
Tang P, Jiang W, Lu S, Zhang X, Xue Y, Qiu Z, Sui Q (2019b) Enhanced degradation of carbon tetrachloride by sodium percarbonate activated with ferrous ion in the presence of ethyl alcohol. Environ Technol 40(3):356–364. https://doi.org/10.1080/09593330.2017.1393012
doi: 10.1080/09593330.2017.1393012
Thomas N, Dionysiou DD, Pillai SC (2021) Heterogeneous Fenton catalysts: a review of recent advances. J Hazard Mater 404:124082. https://doi.org/10.1016/j.jhazmat.2020.124082
doi: 10.1016/j.jhazmat.2020.124082
Tokumura M, Znad HT, Kawase Y (2006) Modeling of an external light irradiation slurry photoreactor: UV light or sunlight-photoassisted Fenton discoloration of azo-dye Orange II with natural mineral tourmaline powder. Chem Eng Sci 61(19):6361–6371. https://doi.org/10.1016/j.ces.2006.05.038
doi: 10.1016/j.ces.2006.05.038
Wang JL, Xu LJ (2012) Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Environ Sci Technol 42:251–325. https://doi.org/10.1080/10643389.2010.507698
doi: 10.1080/10643389.2010.507698
Wang C, Yu G, Chen H, Wang J (2021) Degradation of norfloxacin by hydroxylamine enhanced fenton system: kinetics, mechanism and degradation pathway. Chemosphere 270:129408. https://doi.org/10.1016/j.chemosphere.2020.129408
doi: 10.1016/j.chemosphere.2020.129408
Wu D, Liu Y, Zhang Z, Ma L, Zhang Y (2015) Pyrite-enhanced degradation of chloramphenicol by low concentrations of H
doi: 10.2166/wst.2015.202
Wu Y, Yue Q, Ren Z, Gao B (2018) Immobilization of nanoscale zero-valent iron particles (nZVI) with synthesized activated carbon for the adsorption and degradation of Chloramphenicol (CAP). J Mol Liq 262:19–28. https://doi.org/10.1016/j.molliq.2018.04.032
doi: 10.1016/j.molliq.2018.04.032
Xiong Q, Hu LX, Liu YS, Wang TT, Ying GG (2019) New insight into the toxic effects of chloramphenicol and roxithromycin to algae using FTIR spectroscopy. Aquat Toxicol 207:197–207. https://doi.org/10.1016/j.aquatox.2018.12.017
doi: 10.1016/j.aquatox.2018.12.017
Xu X-R, Li X-Z (2010) Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Sep Purif Technol 72(1):105–111. https://doi.org/10.1016/j.seppur.2010.01.012
doi: 10.1016/j.seppur.2010.01.012
Xu J, Liu X, Cao Z, Bai W, Shi Q, Yang Y (2020a) Fast degradation, large capacity, and high electron efficiency of chloramphenicol removal by different carbon-supported nanoscale zerovalent iron. J Hazard Mater 384:121253. https://doi.org/10.1016/j.jhazmat.2019.121253
doi: 10.1016/j.jhazmat.2019.121253
Xu J, Wang L, Chen J-B, Xu F, Wang K-Q, Hou Z-F, Huang T-Y (2020b) Degradation of AO7 with magnetic Fe
doi: 10.13227/j.hjkx.201908117
Yang F, Zhang Q, Jian H, Wang C, Xing B, Sun H, Hao Y (2020) Effect of biochar-derived dissolved organic matter on adsorption of sulfamethoxazole and chloramphenicol. J Hazard Mater 396:122598. https://doi.org/10.1016/j.jhazmat.2020.122598
doi: 10.1016/j.jhazmat.2020.122598
Yavorskiy V, Sukhatskiy Y, Znak Z, Mnykh R (2016) Investigations of cavitation processes in different types of emitters using sonochemical analysis. Chem Chem Technol 10(4):507–513. https://doi.org/10.23939/chcht10.04.507
doi: 10.23939/chcht10.04.507
Yavorskyi VT, Znak ZO, Sukhatskyi YV, Mnykh RV (2017) Energy characteristics of treatment of corrosive aqueous media in hydrodynamic cavitators. Mater Sci 52(4):595–600. https://doi.org/10.1007/s11003-017-9995-8
doi: 10.1007/s11003-017-9995-8
Zhang C, Dong Y, Li B, Li F (2018) Comparative study of three solid oxidants as substitutes of H
doi: 10.1016/j.jclepro.2017.12.211
Zhang T, Yang Y, Gao J, Li X, Yu H, Wang N, Du P, Yu R, Li H, Fan X, Zhou Z (2020) Synergistic degradation of chloramphenicol by ultrasound-enhanced nanoscale zero-valent iron/persulfate treatment. Sep Purif Technol 240:116575. https://doi.org/10.1016/j.seppur.2020.116575
doi: 10.1016/j.seppur.2020.116575
Znak Z, Sukhatskiy Y (2016) The brandon method in modelling the cavitation processing of aqueous media. East Eur J Enterp Technol 3:37–42. https://doi.org/10.15587/1729-4061.2016.72539
doi: 10.15587/1729-4061.2016.72539
Znak ZO, Sukhatskiy YV, Zin OI, Khomyak SV, Mnykh RV, Lysenko AV (2018a) The decomposition of the benzene in cavitation fields. Voprosy Khimii i Khimicheskoi Tekhnologii 1:72–77
Znak ZO, Sukhatskiy YV, Mnykh RV, Tkach ZS (2018b) Thermochemical analysis of energetics in the process of water sonolysis in cavitation fields. Voprosy Khimii i Khimicheskoi Tekhnologii 3:64–69