Modified sono-Fenton process for oxidative degradation of chloramphenicol.

Antibiotic chloramphenicol Fe2O3 nanoparticles Hydroxylamine Modified sono-Fenton process Oxidative degradation Sodium percarbonate

Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
29 Aug 2024
Historique:
received: 26 10 2023
accepted: 23 08 2024
medline: 31 8 2024
pubmed: 31 8 2024
entrez: 29 8 2024
Statut: aheadofprint

Résumé

Oxidative degradation of chloramphenicol (CAP) using a hybrid approach (US/HA

Identifiants

pubmed: 39210221
doi: 10.1007/s11356-024-34827-0
pii: 10.1007/s11356-024-34827-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Ministry of Education and Science of Ukraine
ID : the scientific research project of young scientists - state registration number 0122U000790

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Ammar HB (2016) Sono-Fenton process for metronidazole degradation in aqueous solution: effect of acoustic cavitation and peroxydisulfate anion. Ultrason Sonochem 33:164–169. https://doi.org/10.1016/j.ultsonch.2016.04.035
doi: 10.1016/j.ultsonch.2016.04.035
Bengtsson G, Fronæus S, Bengtsson-Kloo L (2002) The kinetics and mechanism of oxidation of hydroxylamine by iron(III), J. Chem. Soc. Dalton Trans 12:2548–2552. https://doi.org/10.1039/B201602H
doi: 10.1039/B201602H
Cabotaje ACG, Teodoro ACC, Climaco LS, Rubi RVD, Olay JG (2019) Photocatalytic degradation of chloramphenicol using hydroxyapatitederived from egg shells. J BIMP-EAGA Reg Dev 5(2):22–40. https://doi.org/10.51200/jbimpeagard.v5i2.3267
doi: 10.51200/jbimpeagard.v5i2.3267
Cao Y, Qiu W, Zhao Y, Li J, Jiang J, Yang Y, Pang S-Y, Liu G (2020) The degradation of chloramphenicol by O
doi: 10.1016/j.cej.2020.126146
Chen D, Sivakumar M, Ray AK (2000) Heterogeneous photocatalysis in environmental remediation. Dev Chem Eng Mineral Process 8(5/6):505–550. https://doi.org/10.1002/apj.5500080507
doi: 10.1002/apj.5500080507
Chen L, Ma J, Li X, Zhang J, Fang J, Guan Y, Xie P (2011) Strong enhancement on Fenton oxidation by addition of hydroxylamine to accelerate the Ferric and Ferrous iron cycles. Environ Sci Technol 45(9):3925–3930. https://doi.org/10.1021/es2002748
doi: 10.1021/es2002748
Chen L, Li X, Zhang J, Fang J, Huang Y, Wang P, Ma J (2015) Production of hydroxyl radical via the activation of hydrogen peroxide by hydroxylamine. Environ Sci Technol 49(17):10373–10379. https://doi.org/10.1021/acs.est.5b00483
doi: 10.1021/acs.est.5b00483
Cheng F, Zhou P, Liu Y, Huo X, Zhang J, Yuan Y, Zhang H, Lai B, Zhang Y (2021) Graphene oxide mediated Fe(III) reduction for enhancing Fe(III)/H
doi: 10.1016/j.scitotenv.2021.149097
Dai J, Tian S, Jiang Y, Chang Z, Xie A, Zhang R, Li C, Yan Y (2018) Fe
doi: 10.1021/acs.iecr.7b05300
Dai Z, Liang L, Wang M, Du E (2019) Degradation of DDTs by nano Fe
doi: 10.13671/j.hjkxxb.2018.0449
Danish M, Gu X, Lu S, Xu M, Zhang X, Fu X, Xue Y, Miao Z, Naqvi M, Nasir M (2016) Role of reactive oxygen species and effect of solution matrix in trichloroethylene degradation from aqueous solution by zeolite-supported nano iron as percarbonate activator. Res Chem Intermed 42(9):6959–6973. https://doi.org/10.1007/s11164-016-2509-8
doi: 10.1007/s11164-016-2509-8
Danish M, Gu X, Lu S, Ahmad A, Naqvi M, Farooq U, Zhang X, Fu X, Miao Z, Xue Y (2017) Efficient transformation of trichloroethylene activated through sodium percarbonate using heterogeneous zeolite supported nano zero valent iron-copper bimetallic composite. Chem Eng J 308:396–407. https://doi.org/10.1016/j.cej.2016.09.051
doi: 10.1016/j.cej.2016.09.051
Dindarsafa M, Khataee A, Kaymak B, Vahid B, Karimi A, Rahmani A (2017) Heterogeneous sono-Fenton-like process using martite nanocatalyst prepared by high energy planetary ball milling for treatment of a textile dye. Ultrason Sonochem 34:389–399. https://doi.org/10.1016/j.ultsonch.2016.06.016
doi: 10.1016/j.ultsonch.2016.06.016
Farooq U, Danish M, Lu S, Brusseau ML, Naqvi M, Fu X, Zhang X, Sui Q, Qiu Z (2017a) Efficient transformation in characteristics of cations supported-reduced graphene oxide nanocomposites for the destruction of trichloroethane. Appl Catal A Gener 544:10–20. https://doi.org/10.1016/j.apcata.2017.07.007
doi: 10.1016/j.apcata.2017.07.007
Farooq U, Danish M, Lu S, Naqvi M, Gu X, Fu X, Zhang X, Nasir M (2017b) Synthesis of nZVI@reduced graphene oxide: an efficient catalyst for degradation of 1,1,1-trichloroethane (TCA) in percarbonate system. Res Chem Intermed 43(5):3219–3236. https://doi.org/10.1007/s11164-016-2821-3
doi: 10.1007/s11164-016-2821-3
Farooq U, Wang F, Shang J, Shahid MZ, Akram W, Wang X (2023) Heightening effects of cysteine on degradation of trichloroethylene in Fe
doi: 10.1016/j.cej.2022.139996
Fauzi A, Ratnawulan R (2021) The effect of calcination temperature on the structure of iron oxide phase from west Sumatra. J Phys Conf Ser 1876:012028. https://doi.org/10.1088/1742-6596/1876/1/012028
doi: 10.1088/1742-6596/1876/1/012028
Ferkous H, Hamdaoui O, Merouani S (2015) Sonochemical degradation of naphthol blue black in water: effect of operating parameters. Ultrason Sonochem 26:40–47. https://doi.org/10.1016/j.ultsonch.2015.03.013
doi: 10.1016/j.ultsonch.2015.03.013
Fu X, Gu X, Lu S, Xu M, Miao Z, Zhang X, Zhang Y, Xue Y, Qiu Z, Sui Q (2016) Enhanced degradation of benzene in aqueous solution by sodium percarbonate activated with chelated-Fe(II). Chem Eng J 285:180–188. https://doi.org/10.1016/j.cej.2015.09.112
doi: 10.1016/j.cej.2015.09.112
Fu X, Wei X, Zhang W, Yan W, Wei P, Lyu S (2022) Enhanced effects of reducing agent on oxalate chelated Fe(II) catalyzed percarbonate system for benzene degradation. Water Supply 22(1):208–219. https://doi.org/10.2166/ws.2021.278
doi: 10.2166/ws.2021.278
Gao J, Duan X, O’Shea K, Dionysiou DD (2020) Degradation and transformation of bisphenol A in UV/sodium percarbonate: dual role of carbonate radical anion. Water Res 171:115394. https://doi.org/10.1016/j.watres.2019.115394
doi: 10.1016/j.watres.2019.115394
Gao Y, Yang F, Jian H, Zhen K, Zhang P, Tang X, Fu Z, Xu W, Wang C, Sun H (2021) Pyrene degradation in an aqueous system using ferrous citrate complex activated persulfate over a wide pH range. J Environ Chem Eng 9(6):106733. https://doi.org/10.1016/j.jece.2021.106733
doi: 10.1016/j.jece.2021.106733
Hassanjani-Roshan A, Vaezi MR, Shokuhfar A, Rajabali Z (2011) Synthesis of iron oxide nanoparticles via sonochemical method and their characterization. Particuology 9(1):95–99. https://doi.org/10.1016/j.partic.2010.05.013
doi: 10.1016/j.partic.2010.05.013
Hsueh CL, Huang YH, Wang CC, Chen CY (2005) Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere 58:1409–1414. https://doi.org/10.1016/j.chemosphere.2004.09.091
doi: 10.1016/j.chemosphere.2004.09.091
Huang J, Zhou Z, Danish M, Sui Q, Lyu S (2022a) Synergistic strengthening of SPC/Fe(II) system by CA coupled with mZVI for trichloroethylene degradation in SDS-containing aqueous solution. J Environ Chem Eng 10:108276. https://doi.org/10.1016/j.jece.2022.108276
doi: 10.1016/j.jece.2022.108276
Huang J, Zhou Z, Lyu S (2022b) Comparative study on trichloroethylene degradation enhanced by three organic acid chelating agents in sodium percarbonate/Fe(II) system in the presence of surfactant. J Environ Chem Eng 10:108464. https://doi.org/10.1016/j.jece.2022.108464
doi: 10.1016/j.jece.2022.108464
Karungamye PN (2020) Methods used for removal of pharmaceuticals from wastewater: a review. Appl J Envir Eng Sci 6(4):412–428. https://doi.org/10.48422/IMIST.PRSM/ajees-v6i4.23828
doi: 10.48422/IMIST.PRSM/ajees-v6i4.23828
Kurt A, Mert BK, Özengin N, Sivrioğlu Ö, Yonar T (2017) Treatment of antibiotics in wastewater using advanced oxidation processes (AOPs). In: Farooq R, Ahmad Z (eds) Physico-chemical wastewater treatment and resource recovery. IntechOpen, London, pp 175–211. https://doi.org/10.5772/67538
doi: 10.5772/67538
Lach J (2019) Adsorption of chloramphenicol on commercial and modified activated carbons. Water 11(6):1141. https://doi.org/10.3390/w11061141
doi: 10.3390/w11061141
Lassoued A, Dkhil B, Gadri A, Ammar S (2017) Control of the shape and size of iron oxide (α-Fe
doi: 10.1016/j.rinp.2017.07.066
Li Y, Zhang J, Liu H (2018) Removal of chloramphenicol from aqueous solution using low-cost activated carbon prepared from Typha orientalis, onto powdered activated carbon and its desorption performance by ultrasound. Water 10(4):351. https://doi.org/10.3390/w10040351
doi: 10.3390/w10040351
Li L, Huang J, Hu X, Zhang S, Dai Q, Chai H, Gu L (2019) Activation of sodium percarbonate by vanadium for the degradation of aniline in water: mechanism and identification of reactive species. Chemosphere 215:647–656. https://doi.org/10.1016/j.chemosphere.2018.10.047
doi: 10.1016/j.chemosphere.2018.10.047
Li X, Yang X, Xue H, Pang H, Xu Q (2020) Metal–organic frameworks as a platform for clean energy applications. EnergyChem 2:100027. https://doi.org/10.1016/j.enchem.2020.100027
doi: 10.1016/j.enchem.2020.100027
Li Y, Dong H, Xiao J, Li L, Chu D, Hou X, Xiang S, Dong Q (2022) Insights into a novel CuS/percarbonate/tetraacetylethylenediamine process for sulfamethazine degradation in alkaline medium. J Hazard Mater 435:128999. https://doi.org/10.1016/j.jhazmat.2022.128999
doi: 10.1016/j.jhazmat.2022.128999
Lin K-YA, Lin J-T, Lin Y-F (2017) Heterogeneous catalytic activation of percarbonate by ferrocene for degradation of toxic amaranth dye in water. J Taiwan Inst Chem Eng 78:144–149. https://doi.org/10.1016/j.jtice.2017.05.017
doi: 10.1016/j.jtice.2017.05.017
Lin X, He J, Xu L, Fang Y, Rao G (2020) Degradation of metronidazole by ultrasound-assisted sodium percarbonate activated by ferrous sulfate. Water Pollut Treat 8(3):66–76. https://doi.org/10.12677/wpt.2020.83010
doi: 10.12677/wpt.2020.83010
Liu X, He S, Yang Y, Yao B, Tang Y, Luo L, Zhi D, Wan Z, Wang L, Zhou Y (2021) A review on percarbonate-based advanced oxidation processes for remediation of organic compounds in water. Environ Res 200:111371. https://doi.org/10.1016/j.envres.2021.111371
doi: 10.1016/j.envres.2021.111371
Luo L, Gu C, Li M, Zheng X, Zheng F (2018) Determination of residual 4-nitrobenzaldehyde in chloramphenicol and its pharmaceutical formulation by HPLC with UV/Vis detection after derivatization with 3-nitrophenylhydrazine. J Pharm Biomed Anal 156:307–312. https://doi.org/10.1016/j.jpba.2018.04.024
doi: 10.1016/j.jpba.2018.04.024
Ma C, Yu Z, Wei J, Tan C, Yang X, Wang T, Yu G, Zhang C, Li X (2022) Metal-free ultrathin C
doi: 10.1016/j.apcatb.2022.121951
Melero JA, Martínez F, Molina R (2008) Effect of ultrasound on the properties of heterogeneous catalysts for sono-Fenton oxidation processes. J Adv Oxid Technol 11(1):75–83. https://doi.org/10.1515/jaots-2008-0109
doi: 10.1515/jaots-2008-0109
Meng X, Liu Z, Wang S, Kong F (2021) Synergistic degradation of chloramphenicol by an ultrasound-enhanced Fenton-like sponge iron system. Water 13(24):3561. https://doi.org/10.3390/w13243561
doi: 10.3390/w13243561
Merouani S, Dehane A, Belghit A, Hamdaoui O, Boussalem NEH, Daif H (2022) Removal of persistent textile dyes from wastewater by Fe(II)/H
doi: 10.1039/D2VA00011C
Mohammadi S, Moussavi G, Yaghmaeian K, Giannakis S (2022) Development of a percarbonate-enhanced Vacuum UV process for simultaneous fluoroquinolone antibiotics removal and fecal bacteria inactivation under a continuous flow mode of operation. Chem Eng J 431(2):134064. https://doi.org/10.1016/j.cej.2021.134064
doi: 10.1016/j.cej.2021.134064
Morales-Morales JA (2017) Synthesis of hematite α-Fe
doi: 10.19053/01217488
Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater 98(1–3):33–50. https://doi.org/10.1016/S0304-3894(02)00282-0
doi: 10.1016/S0304-3894(02)00282-0
Nguyen LM, Nguyen NTT, Nguyen NTT, Nguyen TT, Nguyen DTC, Tran TV (2022) Occurrence, toxicity and adsorptive removal of the chloramphenicol antibiotic in water: a review. Environ Chem Lett 20(3):1929–1963. https://doi.org/10.1007/s10311-022-01416-x
doi: 10.1007/s10311-022-01416-x
Oberoi AS, Jia Y, Zhang H, Khanal SK, Lu H (2019) Insights into fate and removal of antibiotics in engineered biological treatment systems: a critical review. Environ Sci Technol 53(13):7234–7264. https://doi.org/10.1021/acs.est.9b01131
doi: 10.1021/acs.est.9b01131
Pimentel JAI, Dong C-D, Garcia-Segura S, Abarca RRM, Chen C-W, de Luna MDG (2021) Degradation of tetracycline antibiotics by Fe
doi: 10.1016/j.scitotenv.2021.146411
Rohana H, Hager-Cohen A, Azrad M, Peretz A (2023) Trend of changes in chloramphenicol resistance during the years 2017–2020: a retrospective report from Israel. Antibiotics 12(2):196. https://doi.org/10.3390/antibiotics12020196
doi: 10.3390/antibiotics12020196
Sukhatskiy YV, Znak ZO, Zin OI (2020) Cavitation and its combinations with other advanced oxidation processes in phenol wastewater treatment: a review. Voprosy Khimii i Khimicheskoi Tekhnologii 4:16–30. https://doi.org/10.32434/0321-4095-2020-131-4-16-30
doi: 10.32434/0321-4095-2020-131-4-16-30
Sukhatskiy Y, Znak Z, Zin O, Chupinskyi D (2021) Ultrasonic cavitation in wastewater treatment from azo dye methyl orange. Chem Chem Technol 15(2):284–290. https://doi.org/10.23939/chcht15.02.284
doi: 10.23939/chcht15.02.284
Sukhatskiy Y, Sozanskyi M, Shepida M, Znak Z, Gogate PR (2022) Decolorization of an aqueous solution of methylene blue using a combination of ultrasound and peroxate process. Sep Purif Technol 288:120651. https://doi.org/10.1016/j.seppur.2022.120651
doi: 10.1016/j.seppur.2022.120651
Sukhatskiy Y, Shepida M, Sozanskyi M, Znak Z, Gogate PR (2023) Periodate-based advanced oxidation processes for wastewater treatment: a review. Sep Purif Technol 304:122305. https://doi.org/10.1016/j.seppur.2022.122305
doi: 10.1016/j.seppur.2022.122305
Sun K, Shi Y, Xu W, Potter N, Li Z, Zhu J (2017) Modification of clays and zeolites by ionic liquids for the uptake of chloramphenicol from water. Chem Eng J 313:336–344. https://doi.org/10.1016/j.cej.2016.12.083
doi: 10.1016/j.cej.2016.12.083
Tang S, Yuan D, Rao Y, Li M, Shi G, Gu J, Zhang T (2019a) Percarbonate promoted antibiotic decomposition in dielectric barrier discharge plasma. J Hazard Mater 366:669–676. https://doi.org/10.1016/j.jhazmat.2018.12.056
doi: 10.1016/j.jhazmat.2018.12.056
Tang P, Jiang W, Lu S, Zhang X, Xue Y, Qiu Z, Sui Q (2019b) Enhanced degradation of carbon tetrachloride by sodium percarbonate activated with ferrous ion in the presence of ethyl alcohol. Environ Technol 40(3):356–364. https://doi.org/10.1080/09593330.2017.1393012
doi: 10.1080/09593330.2017.1393012
Thomas N, Dionysiou DD, Pillai SC (2021) Heterogeneous Fenton catalysts: a review of recent advances. J Hazard Mater 404:124082. https://doi.org/10.1016/j.jhazmat.2020.124082
doi: 10.1016/j.jhazmat.2020.124082
Tokumura M, Znad HT, Kawase Y (2006) Modeling of an external light irradiation slurry photoreactor: UV light or sunlight-photoassisted Fenton discoloration of azo-dye Orange II with natural mineral tourmaline powder. Chem Eng Sci 61(19):6361–6371. https://doi.org/10.1016/j.ces.2006.05.038
doi: 10.1016/j.ces.2006.05.038
Wang JL, Xu LJ (2012) Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Environ Sci Technol 42:251–325. https://doi.org/10.1080/10643389.2010.507698
doi: 10.1080/10643389.2010.507698
Wang C, Yu G, Chen H, Wang J (2021) Degradation of norfloxacin by hydroxylamine enhanced fenton system: kinetics, mechanism and degradation pathway. Chemosphere 270:129408. https://doi.org/10.1016/j.chemosphere.2020.129408
doi: 10.1016/j.chemosphere.2020.129408
Wu D, Liu Y, Zhang Z, Ma L, Zhang Y (2015) Pyrite-enhanced degradation of chloramphenicol by low concentrations of H
doi: 10.2166/wst.2015.202
Wu Y, Yue Q, Ren Z, Gao B (2018) Immobilization of nanoscale zero-valent iron particles (nZVI) with synthesized activated carbon for the adsorption and degradation of Chloramphenicol (CAP). J Mol Liq 262:19–28. https://doi.org/10.1016/j.molliq.2018.04.032
doi: 10.1016/j.molliq.2018.04.032
Xiong Q, Hu LX, Liu YS, Wang TT, Ying GG (2019) New insight into the toxic effects of chloramphenicol and roxithromycin to algae using FTIR spectroscopy. Aquat Toxicol 207:197–207. https://doi.org/10.1016/j.aquatox.2018.12.017
doi: 10.1016/j.aquatox.2018.12.017
Xu X-R, Li X-Z (2010) Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Sep Purif Technol 72(1):105–111. https://doi.org/10.1016/j.seppur.2010.01.012
doi: 10.1016/j.seppur.2010.01.012
Xu J, Liu X, Cao Z, Bai W, Shi Q, Yang Y (2020a) Fast degradation, large capacity, and high electron efficiency of chloramphenicol removal by different carbon-supported nanoscale zerovalent iron. J Hazard Mater 384:121253. https://doi.org/10.1016/j.jhazmat.2019.121253
doi: 10.1016/j.jhazmat.2019.121253
Xu J, Wang L, Chen J-B, Xu F, Wang K-Q, Hou Z-F, Huang T-Y (2020b) Degradation of AO7 with magnetic Fe
doi: 10.13227/j.hjkx.201908117
Yang F, Zhang Q, Jian H, Wang C, Xing B, Sun H, Hao Y (2020) Effect of biochar-derived dissolved organic matter on adsorption of sulfamethoxazole and chloramphenicol. J Hazard Mater 396:122598. https://doi.org/10.1016/j.jhazmat.2020.122598
doi: 10.1016/j.jhazmat.2020.122598
Yavorskiy V, Sukhatskiy Y, Znak Z, Mnykh R (2016) Investigations of cavitation processes in different types of emitters using sonochemical analysis. Chem Chem Technol 10(4):507–513. https://doi.org/10.23939/chcht10.04.507
doi: 10.23939/chcht10.04.507
Yavorskyi VT, Znak ZO, Sukhatskyi YV, Mnykh RV (2017) Energy characteristics of treatment of corrosive aqueous media in hydrodynamic cavitators. Mater Sci 52(4):595–600. https://doi.org/10.1007/s11003-017-9995-8
doi: 10.1007/s11003-017-9995-8
Zhang C, Dong Y, Li B, Li F (2018) Comparative study of three solid oxidants as substitutes of H
doi: 10.1016/j.jclepro.2017.12.211
Zhang T, Yang Y, Gao J, Li X, Yu H, Wang N, Du P, Yu R, Li H, Fan X, Zhou Z (2020) Synergistic degradation of chloramphenicol by ultrasound-enhanced nanoscale zero-valent iron/persulfate treatment. Sep Purif Technol 240:116575. https://doi.org/10.1016/j.seppur.2020.116575
doi: 10.1016/j.seppur.2020.116575
Znak Z, Sukhatskiy Y (2016) The brandon method in modelling the cavitation processing of aqueous media. East Eur J Enterp Technol 3:37–42. https://doi.org/10.15587/1729-4061.2016.72539
doi: 10.15587/1729-4061.2016.72539
Znak ZO, Sukhatskiy YV, Zin OI, Khomyak SV, Mnykh RV, Lysenko AV (2018a) The decomposition of the benzene in cavitation fields. Voprosy Khimii i Khimicheskoi Tekhnologii 1:72–77
Znak ZO, Sukhatskiy YV, Mnykh RV, Tkach ZS (2018b) Thermochemical analysis of energetics in the process of water sonolysis in cavitation fields. Voprosy Khimii i Khimicheskoi Tekhnologii 3:64–69

Auteurs

Yurii Sukhatskiy (Y)

Department of Chemistry and Technology of Inorganic Substances, Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, Bandera Str., Lviv, 79013, Ukraine.

Mariana Shepida (M)

Department of Chemistry and Technology of Inorganic Substances, Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, Bandera Str., Lviv, 79013, Ukraine.

Dmytro Lysak (D)

Department of Chemistry and Technology of Inorganic Substances, Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, Bandera Str., Lviv, 79013, Ukraine.

Zenovii Znak (Z)

Department of Chemistry and Technology of Inorganic Substances, Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, Bandera Str., Lviv, 79013, Ukraine.

Parag Ratnakar Gogate (PR)

Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 40019, India. pr.gogate@ictmumbai.edu.in.

Classifications MeSH