Biochar carbon nanodots for catalytic acetalization of biodiesel by-product crude glycerol to solketal: process optimization by RSM and life cycle cost analysis.

Acetalization Biochar Carbon-nanodots Life cycle cost analysis Solketal

Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
29 Aug 2024
Historique:
received: 22 03 2024
accepted: 06 08 2024
medline: 31 8 2024
pubmed: 31 8 2024
entrez: 29 8 2024
Statut: epublish

Résumé

Carbon-based nanodots have garnered recent interest for their simple synthesis and versatile utility, ranging from biomedical to (opto) electronic applications, evolving into a tunable and biocompatible material. Here, for the first time, a biochar (lotus leaf) derived carbon nanodots was synthesized through hydrothermal carbonization. The synthesized hollow spherical biochar was engineered via functionalization by grafting -SO

Identifiants

pubmed: 39209866
doi: 10.1038/s41598-024-69553-7
pii: 10.1038/s41598-024-69553-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

20140

Informations de copyright

© 2024. The Author(s).

Références

Ashraf, H. & Karahan, B. D. Biowaste valorization into valuable nanomaterials: Synthesis of green carbon nanodots and anode material for lithium-ion batteries from watermelon seeds. Mater. Res. Bull. 169, 112492 (2024).
doi: 10.1016/j.materresbull.2023.112492
Xu, X. et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736–12737 (2004).
pubmed: 15469243 doi: 10.1021/ja040082h
Hassanvand, Z., Jalali, F., Nazari, M., Parnianchi, F. & Santoro, C. Carbon nanodots in electrochemical sensors and biosensors: A review. ChemElectroChem 8, 15–35 (2021).
doi: 10.1002/celc.202001229
Latif, Z. et al. Carbon quantum dots (CQDs)-modified polymers: A review of non-optical applications. Nanoscale 16, 2265–2288 (2024).
pubmed: 38221825 doi: 10.1039/D3NR04997C
Nguyen, T. N., Le, P. A. & Phung, V. B. T. Facile green synthesis of carbon quantum dots and biomass-derived activated carbon from banana peels: Synthesis and investigation. Biomass Convers. Biorefinery 12, 2407–2416 (2022).
doi: 10.1007/s13399-020-00839-2
Ruatpuia, J. V. et al. Green biodiesel production from Jatropha curcas oil using a carbon-based solid acid catalyst: A process optimization study. Renew. Energy 206, 597–608 (2023).
doi: 10.1016/j.renene.2023.02.041
Gouda, S. P., Dhakshinamoorthy, A. & Rokhum, S. L. Metal-organic framework as a heterogeneous catalyst for biodiesel production: A review. Chem. Eng. J. Adv. 12, 100415 (2022).
doi: 10.1016/j.ceja.2022.100415
Yin, P. et al. Effects of Scenedesmus dimorphus, spirulina biodiesel, hydrogen and nanoparticles fuel blends on mass burn fraction, emission, noise and vibration characteristics. Fuel 352, 129010 (2023).
doi: 10.1016/j.fuel.2023.129010
Kushwaha, T. et al. Esterification of oleic acid to biodiesel using biowaste-based solid acid catalyst under microwave irradiation. Environ. Prog. Sustain. Energy 2023, 14170 (2023).
doi: 10.1002/ep.14170
Ao, S. et al. Microwave-assisted valorization of glycerol to solketal using biomass-derived heterogeneous catalyst. Fuel 345, 128190 (2023).
doi: 10.1016/j.fuel.2023.128190
Ao, S. & Rokhum, S. L. Recent advances in the valorization of biodiesel by-product glycerol to solketal. J. Chem. 2022, 1–18 (2022).
doi: 10.1155/2022/4938672
Das, A., Shi, D., Halder, G. & Lalthazuala Rokhum, S. Microwave-assisted synthesis of glycerol carbonate by transesterification of glycerol using Mangifera indica peel calcined ash as catalyst. Fuel 330, 125511 (2022).
doi: 10.1016/j.fuel.2022.125511
Gomes, P. et al. Green production of biodiesel from high acid value oil via glycerol esterification and transesterification catalyzed by nano hydrated eggshell-derived CaO. Energies 16, 6717 (2023).
doi: 10.3390/en16186717
Guerra, F. B., Cavalcante, R. M. & Young, A. F. Green propylene and polypropylene production from glycerol: Process simulation and economic evaluation. ACS Sustain. Chem. Eng. 11, 2752–2763 (2023).
doi: 10.1021/acssuschemeng.2c05371
Subhash, M., Pal, D. B. & Jana, S. K. Biofuels additives derived via clay supported heteropoly acid catalyzed etherification of glycerol with t-butanol-biomass to liquid oxygenates. Chem. Pap. 76, 775–784 (2022).
doi: 10.1007/s11696-021-01896-1
Saikia, K. et al. Sulphonated biomass-based catalyst for solketal synthesis by acetalization of glycerol—a byproduct of biodiesel production. Fuel Process. Technol. 238, 107482 (2022).
doi: 10.1016/j.fuproc.2022.107482
Wang, H., Cui, Y., Shi, J., Tao, X. & Zhu, G. Porous carbon supported Lewis acid-base sites as metal-free catalysts for the carbonylation of glycerol with urea. Appl. Catal. B Environ. 330, 122457 (2023).
doi: 10.1016/j.apcatb.2023.122457
Meng, F. et al. Carbon-based metal-free catalysts for selective oxidation of glycerol to glycolic acid. Chem. Eng. Sci. 268, 118394 (2023).
doi: 10.1016/j.ces.2022.118394
Rajkumari, K. et al. A reusable magnetic nanocatalyst for bio-fuel additives: The ultrasound-assisted synthesis of solketal. Sustain. Energy Fuels 5, 2362–2372 (2021).
doi: 10.1039/D0SE01900C
Laskar, I. B., Rajkumari, K., Gupta, R. & Rokhum, L. Acid-functionalized mesoporous polymer-catalyzed acetalization of glycerol to solketal, a potential fuel additive under solvent-free conditions. Energy Fuels 32, 12567–12576 (2018).
doi: 10.1021/acs.energyfuels.8b02948
Huang, Y., Zhang, G. & Omega, Q.Z.-A. Preparation of the WOX/MCM-41 solid acid catalyst and the catalytic performance for solketal synthesis. ACS Publ. 6, 3883 (2021).
Moreira, M. N., Faria, R. P. V., Ribeiro, A. M. & Rodrigues, A. E. Solketal production from glycerol ketalization with acetone: Catalyst selection and thermodynamic and kinetic reaction study. Ind. Eng. Chem. Res. 58, 17746–17759 (2019).
doi: 10.1021/acs.iecr.9b03725
Noor Armylisas, A. H., Hoong, S. S., Tuan Noor Maznee, T. I., Yeong, S. K. & Mohammat, M. F. Solventless transacetalization of solketal over Amberlyst catalysts into valuable bio‐based chemicals. In Wiley Online Libr. Noor Armylisas, SS Hoong, TI Tuan Noor Maz. SK Yeong, MF MohammatJournal Chem. Technol. Biotechnol., vol. 96 2667–2674 (Wiley, 2021).
Vannucci, J. A., Nichio, N. N. & Pompeo, F. Solketal synthesis from ketalization of glycerol with acetone: A kinetic study over a sulfated zirconia catalyst. Catal. Today 372, 238–245 (2021).
doi: 10.1016/j.cattod.2020.10.005
Rokhum, S. L., Changmai, B., Kress, T. & Wheatley, A. E. H. A one-pot route to 1 tunable sugar-derived sulfonated carbon catalysts 2 for sustainable production of biodiesel by fatty acid esterification. Renew. Energy 1481, 01720–01721 (2021).
Devasan, R. et al. Microwave-assisted biodiesel production using bio-waste catalyst and process optimization using response surface methodology and kinetic study. Sci. Rep. 13, 1–17 (2023).
doi: 10.1038/s41598-023-29883-4
Ao, S. et al. Active sites engineered biomass-carbon as a catalyst for biodiesel production: Process optimization using RSM and life cycle assessment. Energy Convers. Manag. 300, 117956 (2024).
doi: 10.1016/j.enconman.2023.117956
Jamil, F. et al. Valorization of waste “date seeds” bio-glycerol for synthesizing oxidative green fuel additive. J. Clean. Prod. 165, 1090–1096 (2017).
doi: 10.1016/j.jclepro.2017.07.216
Kefas, H. M., Yunus, R., Rashid, U. & Taufiq-Yap, Y. H. Modified sulfonation method for converting carbonized glucose into solid acid catalyst for the esterification of palm fatty acid distillate. Fuel 229, 68–78 (2018).
doi: 10.1016/j.fuel.2018.05.014
Ngafwan, N. et al. Study on novel fluorescent carbon nanomaterials in food analysis. Food Sci. Technol. 42, 1456 (2022).
doi: 10.1590/fst.37821
Thommes, M. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015).
doi: 10.1515/pac-2014-1117
Onat, E., Sait Izgi, M., Şahin, Ö. & Saka, C. Highly active hydrogen production from hydrolysis of potassium borohydride by caffeine carbon quantum dot-supported cobalt catalyst in ethanol solvent by hydrothermal treatment. Int. J. Hydrogen Energy 1, 456 (2023).
Ao, S. et al. Synthesis and utilization of biomass-derived sulfonated heterogeneous catalyst-BT-SO3H for microalgal biodiesel production. Environ. Res. 245, 118025 (2024).
pubmed: 38151153 doi: 10.1016/j.envres.2023.118025
Betiku, E., Anietie, H., Etim, O., Pereao, O. & Ojumu, T. V. Two-step conversion of neem (Azadirachta indica) seed oil into fatty methyl esters using a heterogeneous biomass-based catalyst: An example of cocoa pod husk. Energy Fuels 31, 46 (2017).
doi: 10.1021/acs.energyfuels.7b00604
Selvaraj, R., Moorthy, I. G., Kumar, R. V. & Sivasubramanian, V. Microwave mediated production of FAME from waste cooking oil: Modelling and optimization of process parameters by RSM and ANN approach. Fuel 237, 40–49 (2019).
doi: 10.1016/j.fuel.2018.09.147
Marzouk, M. N. et al. Process optimization of biodiesel production via esterification of oleic acid using sulfonated hierarchical mesoporous ZSM-5 as an efficient heterogeneous catalyst. J. Environ. Chem. Eng. 9, 105035 (2021).
doi: 10.1016/j.jece.2021.105035
Sharma, A., Kodgire, P. & Kachhwaha, S. S. Biodiesel production from waste cotton-seed cooking oil using microwave-assisted transesterification: Optimization and kinetic modeling. Renew. Sustain. Energy Rev. 116, 109394 (2019).
doi: 10.1016/j.rser.2019.109394
Kodgire, P., Sharma, A. & Kachhwaha, S. S. Optimization and kinetics of biodiesel production of Ricinus communis oil and used cottonseed cooking oil employing synchronised ‘ultrasound + microwave’ and heterogeneous CaO catalyst. Renew. Energy 212, 320–332 (2023).
doi: 10.1016/j.renene.2023.05.016
Kowalska-Kuś, J., Held, A. & Nowińska, K. A continuous-flow process for the acetalization of crude glycerol with acetone on zeolite catalysts. Chem. Eng. J. 401, 126143 (2020).
doi: 10.1016/j.cej.2020.126143
Li, X., Jiang, Y., Zhou, R. & Hou, Z. Acetalization of glycerol with acetone over appropriately-hydrophobic zirconium organophosphonates. Appl. Clay Sci. 189, 105555 (2020).
doi: 10.1016/j.clay.2020.105555
Sadjadi, S., Tarighi, S., Delangiz, M. & Heravi, M. Heteropolyacid supported on ionic liquid decorated hierarchical faujasite zeolite as an efficient catalyst for glycerol acetalization to solketal. Sci. Rep. 13, 1–12 (2023).
doi: 10.1038/s41598-023-42956-8
Santos-Vieira, I. C. M. S., Mendes, R. F., Almeida Paz, F. A., Rocha, J. & Simões, M. M. Q. Acetalization of glycerol with acetone over UAV-59 catalyst: Mild reaction conditions and enhanced selectivity. Catal. Today 424, 114296 (2023).
doi: 10.1016/j.cattod.2023.114296
Poulose, C. A. et al. Acidic graphene organocatalyst for the superior transformation of wastes into high-added-value chemicals. Nat. Commun. 14, 1–10 (2023).
Ginjupalli, S. R., Balla, P. K., Ramachandra-Prabhu, C., Pethan-Rajan, N. & Pothu, R. Acid catalysed glycerol transformation to fuel additives over different metal phosphate solid acid catalysts. Biomass Convers. Biorefinery 13, 12749–12761 (2023).
doi: 10.1007/s13399-021-02259-2
Ghosh, A. et al. A green approach for the preparation of a surfactant embedded sulfonated carbon catalyst towards glycerol acetalization reactions. Catal. Sci. Technol. 10, 4827–4844 (2020).
doi: 10.1039/D0CY00336K
Saini, B., Tathod, A. P., Saxena, S. K., Arumugam, S. & Viswanadham, N. Sustainable upgrade of bioderived glycerol to solketal through acetalization over metal-free mordenite catalysts. ACS Sustain. Chem. Eng. 10, 1172–1181 (2022).
doi: 10.1021/acssuschemeng.1c06330
Balotin, G. et al. Upgrading catalytic efficiency of activated carbons by tailoring lignocellulosic biomass waste for sustainable conversion of glycerol to solketal. Mol. Catal. 538, 112976 (2023).
doi: 10.1016/j.mcat.2023.112976
Dashtipour, B., Dehghanpour, S. & Sharbatdaran, M. Improvement of the acidic properties of MOF by doped SnO2 quantum dots for the production of solketal. J. Chem. Sci. 134, 4 (2022).
doi: 10.1007/s12039-022-02103-8

Auteurs

Supongsenla Ao (S)

Department of Chemistry, National Institute of Technology Silchar, Silchar, 788010, Assam, India.

Shiva Prasad Gouda (SP)

Department of Chemistry, National Institute of Technology Silchar, Silchar, 788010, Assam, India.

Lakshi Saikia (L)

Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India.

Baskar Gurunathan (B)

Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 600119, India.

Samuel Lalthazuala Rokhum (SL)

Department of Chemistry, National Institute of Technology Silchar, Silchar, 788010, Assam, India. rokhum@che.nits.ac.in.

Classifications MeSH