NaCl enhances CD8


Journal

Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354

Informations de publication

Date de publication:
28 Aug 2024
Historique:
received: 20 10 2023
accepted: 10 07 2024
medline: 31 8 2024
pubmed: 31 8 2024
entrez: 28 8 2024
Statut: aheadofprint

Résumé

CD8

Identifiants

pubmed: 39198631
doi: 10.1038/s41590-024-01923-9
pii: 10.1038/s41590-024-01923-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : AIRC IG 2017 - ID 20676
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : AIRC IG 2022 - ID 27391
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : AIRC 5×1000 program UniCanVax 22757
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : AIRC/FIRC fellowship
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : AIRC/FIRC fellowship
Organisme : Cancer Research Institute (CRI)
ID : CRI Lloyd J. Old STAR (CRI award 3914)

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Mahnke, Y. D., Brodie, T. M., Sallusto, F., Roederer, M. & Lugli, E. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur. J. Immunol. 43, 2797–2809 (2013).
pubmed: 24258910 doi: 10.1002/eji.201343751
McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).
pubmed: 30676822 doi: 10.1146/annurev-immunol-041015-055318
Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).
pubmed: 31207605 doi: 10.1038/s41586-019-1326-9
Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).
pubmed: 25838376 doi: 10.1126/science.aaa6204
Zehn, D., Thimme, R., Lugli, E., de Almeida, G. P. & Oxenius, A. ‘Stem-like’ precursors are the fount to sustain persistent CD8
pubmed: 35624209 doi: 10.1038/s41590-022-01219-w
Park, J., Hsueh, P. C., Li, Z. & Ho, P. C. Microenvironment-driven metabolic adaptations guiding CD8
pubmed: 36630916 doi: 10.1016/j.immuni.2022.12.008
Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).
pubmed: 24792914 pmcid: 4074507 doi: 10.1016/j.immuni.2014.04.007
Clausen, M. V., Hilbers, F. & Poulsen, H. The structure and function of the Na,K-ATPase isoforms in health and disease. Front. Physiol. 8, 371 (2017).
pubmed: 28634454 pmcid: 5459889 doi: 10.3389/fphys.2017.00371
Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).
pubmed: 23746840 pmcid: 3804311 doi: 10.1016/j.cell.2013.05.016
Wang, C. et al. CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell 163, 1413–1427 (2015).
pubmed: 26607793 pmcid: 4671820 doi: 10.1016/j.cell.2015.10.068
Leone, R. D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019).
pubmed: 31699883 pmcid: 7023461 doi: 10.1126/science.aav2588
Chapman, N. M. & Chi, H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity 55, 14–30 (2022).
pubmed: 35021054 pmcid: 8842882 doi: 10.1016/j.immuni.2021.12.012
Eil, R. et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 537, 539–543 (2016).
pubmed: 27626381 pmcid: 5204372 doi: 10.1038/nature19364
Lotscher, J. et al. Magnesium sensing via LFA-1 regulates CD8
pubmed: 35051368 doi: 10.1016/j.cell.2021.12.039
Heintzman, D. R., Fisher, E. L. & Rathmell, J. C. Microenvironmental influences on T cell immunity in cancer and inflammation. Cell Mol. Immunol. 19, 316–326 (2022).
pubmed: 35039633 pmcid: 8762638 doi: 10.1038/s41423-021-00833-2
Wilck, N. et al. Salt-responsive gut commensal modulates T
pubmed: 29143823 pmcid: 6070150 doi: 10.1038/nature24628
Wu, C. et al. Induction of pathogenic T
pubmed: 23467085 pmcid: 3637879 doi: 10.1038/nature11984
Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic T
pubmed: 23467095 pmcid: 3746493 doi: 10.1038/nature11868
Matthias, J. et al. Salt generates antiinflammatory Th17 cells but amplifies pathogenicity in proinflammatory cytokine microenvironments. J. Clin. Invest. 130, 4587–4600 (2020).
pubmed: 32484796 pmcid: 7456214 doi: 10.1172/JCI137786
Luo, Y. et al. Negligible effect of sodium chloride on the development and function of TGF-β-induced CD4
pubmed: 30759396 pmcid: 6948355 doi: 10.1016/j.celrep.2019.01.066
Hernandez, A. L. et al. Sodium chloride inhibits the suppressive function of FOXP3
pubmed: 26524592 pmcid: 4639983 doi: 10.1172/JCI81151
He, W. et al. High-salt diet inhibits tumour growth in mice via regulating myeloid-derived suppressor cell differentiation. Nat. Commun. 11, 1732 (2020).
pubmed: 32265505 pmcid: 7138858 doi: 10.1038/s41467-020-15524-1
Rizvi, Z. A. et al. High-salt diet mediates interplay between NK cells and gut microbiota to induce potent tumor immunity. Sci. Adv. 7, eabg5016 (2021).
pubmed: 34516769 pmcid: 8442882 doi: 10.1126/sciadv.abg5016
Hofer, T., Krichevsky, O. & Altan-Bonnet, G. Competition for IL-2 between regulatory and effector T cells to chisel immune responses. Front. Immunol. 3, 268 (2012).
pubmed: 22973270 pmcid: 3433682 doi: 10.3389/fimmu.2012.00268
Pilipow, K. et al. Antioxidant metabolism regulates CD8
pubmed: 30232291 pmcid: 6237218 doi: 10.1172/jci.insight.122299
Matthias, J. et al. Sodium chloride is an ionic checkpoint for human T
pubmed: 30787167 doi: 10.1126/scitranslmed.aau0683
Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011).
pubmed: 21926977 pmcid: 3192229 doi: 10.1038/nm.2446
Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).
pubmed: 22195744 pmcid: 3248798 doi: 10.1016/j.immuni.2011.09.021
Rutishauser, R. L. et al. Transcriptional repressor Blimp-1 promotes CD8
pubmed: 19664941 pmcid: 2783637 doi: 10.1016/j.immuni.2009.05.014
Kallies, A., Xin, A., Belz, G. T. & Nutt, S. L. Blimp-1 transcription factor is required for the differentiation of effector CD8
pubmed: 19664942 doi: 10.1016/j.immuni.2009.06.021
Galletti, G. et al. Two subsets of stem-like CD8
pubmed: 33046887 pmcid: 7610790 doi: 10.1038/s41590-020-0791-5
Giordano, M. et al. Molecular profiling of CD8 T cells in autochthonous melanoma identifies Maf as driver of exhaustion. EMBO J. 34, 2042–2058 (2015).
pubmed: 26139534 pmcid: 4551351 doi: 10.15252/embj.201490786
Chu, Y. et al. Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance. Nat. Med. 29, 1550–1562 (2023).
pubmed: 37248301 doi: 10.1038/s41591-023-02371-y
Corte-Real, B. F. et al. Sodium perturbs mitochondrial respiration and induces dysfunctional Tregs. Cell Metab. 35, 299–315.e8 (2023).
pubmed: 36754020 doi: 10.1016/j.cmet.2023.01.009
Wu, T. et al. The TCF1–Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci. Immunol. 1, eaai8593 (2016).
pubmed: 28018990 pmcid: 5179228 doi: 10.1126/sciimmunol.aai8593
Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
pubmed: 28991892 pmcid: 5937676 doi: 10.1038/nmeth.4463
Chen, Z. et al. In vivo CD8
pubmed: 33636129 pmcid: 8054351 doi: 10.1016/j.cell.2021.02.019
Milner, J. J. et al. Runx3 programs CD8
pubmed: 29211713 pmcid: 5747964 doi: 10.1038/nature24993
Klebanoff, C. A. et al. Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptor-engineered adoptive immunotherapy. JCI Insight 2, e95103 (2017).
pubmed: 29212954 pmcid: 5752304 doi: 10.1172/jci.insight.95103
Tsui, C. et al. MYB orchestrates T cell exhaustion and response to checkpoint inhibition. Nature 609, 354–360 (2022).
pubmed: 35978192 pmcid: 9452299 doi: 10.1038/s41586-022-05105-1
Lugli, E., Galletti, G., Boi, S. K. & Youngblood, B. A. Stem, effector, and hybrid states of memory CD8
pubmed: 31810790 doi: 10.1016/j.it.2019.11.004
Luoma, A. M. et al. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy. Cell 185, 2918–2935.e29 (2022).
pubmed: 35803260 pmcid: 9508682 doi: 10.1016/j.cell.2022.06.018
Brummelman, J. et al. High-dimensional single cell analysis identifies stem-like cytotoxic CD8
pubmed: 30154266 pmcid: 6170179 doi: 10.1084/jem.20180684
Wischnewski, V. et al. Phenotypic diversity of T cells in human primary and metastatic brain tumors revealed by multiomic interrogation. Nat. Cancer 4, 908–924 (2023).
pubmed: 37217652 pmcid: 10293012 doi: 10.1038/s43018-023-00566-3
Simoni, Y. et al. Bystander CD8
pubmed: 29769722 doi: 10.1038/s41586-018-0130-2
Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat. Commun. 9, 2724 (2018).
pubmed: 30006565 pmcid: 6045647 doi: 10.1038/s41467-018-05072-0
Fairfax, B. P. et al. Peripheral CD8
pubmed: 32042196 pmcid: 7611047 doi: 10.1038/s41591-019-0734-6
Caushi, J. X. et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature 596, 126–132 (2021).
pubmed: 34290408 pmcid: 8338555 doi: 10.1038/s41586-021-03752-4
Yoo, H. C., Yu, Y. C., Sung, Y. & Han, J. M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 52, 1496–1516 (2020).
pubmed: 32943735 pmcid: 8080614 doi: 10.1038/s12276-020-00504-8
Schulte, M. L. et al. Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat. Med. 24, 194–202 (2018).
pubmed: 29334372 pmcid: 5803339 doi: 10.1038/nm.4464
Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D. & Thompson, C. B. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413–416 (2015).
pubmed: 25487152 doi: 10.1038/nature13981
Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).
pubmed: 19372391 pmcid: 2715015 doi: 10.1126/science.1170116
Liu, P. S. et al. α-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18, 985–994 (2017).
pubmed: 28714978 doi: 10.1038/ni.3796
Roychoudhuri, R. et al. BACH2 regulates CD8
pubmed: 27158840 pmcid: 4918801 doi: 10.1038/ni.3441
Li, P. et al. BATF-JUN is critical for IRF4-mediated transcription in T cells. Nature 490, 543–546 (2012).
pubmed: 22992523 pmcid: 3537508 doi: 10.1038/nature11530
Kurachi, M. et al. The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8
pubmed: 24584090 pmcid: 4000237 doi: 10.1038/ni.2834
Gattinoni, L. et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8
pubmed: 15931392 pmcid: 1137001 doi: 10.1172/JCI24480
Grinstein, S., Rothstein, A. & Cohen, S. Mechanism of osmotic activation of Na
pubmed: 2987392 doi: 10.1085/jgp.85.5.765
Leslie, T. K. et al. Sodium homeostasis in the tumour microenvironment. Biochim. Biophys. Acta Rev. Cancer 1872, 188304 (2019).
pubmed: 31348974 pmcid: 7115894 doi: 10.1016/j.bbcan.2019.07.001
Grinstein, S., Clarke, C. A. & Rothstein, A. Activation of Na
pubmed: 6644271 doi: 10.1085/jgp.82.5.619
Stanton, B. A. & Kaissling, B. Regulation of renal ion transport and cell growth by sodium. Am. J. Physiol. 257, F1–F10 (1989).
pubmed: 2546443
Aramburu, J. & Lopez-Rodriguez, C. Regulation of inflammatory functions of macrophages and T lymphocytes by NFAT5. Front. Immunol. 10, 535 (2019).
pubmed: 30949179 pmcid: 6435587 doi: 10.3389/fimmu.2019.00535
Scalise, M. et al. Transport mechanism and regulatory properties of the human amino acid transporter ASCT2 (SLC1A5). Amino Acids 46, 2463–2475 (2014).
pubmed: 25052780 doi: 10.1007/s00726-014-1808-x
Soll, D. et al. Sodium chloride in the tumor microenvironment enhances T-cell metabolic fitness and cytotoxicity. Nat. Immunol. https://doi.org/10.1038/s41590-024-01918-6 (2023).
Reinfeld, B. I. et al. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature 593, 282–288 (2021).
pubmed: 33828302 pmcid: 8122068 doi: 10.1038/s41586-021-03442-1
Tille, L. et al. Activation of the transcription factor NFAT5 in the tumor microenvironment enforces CD8
pubmed: 37709986 doi: 10.1038/s41590-023-01614-x
Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017).
pubmed: 28397821 pmcid: 5554367 doi: 10.1038/nature22079
Brummelman, J. et al. Development, application and computational analysis of high-dimensional fluorescent antibody panels for single-cell flow cytometry. Nat. Protoc. 14, 1946–1969 (2019).
pubmed: 31160786 doi: 10.1038/s41596-019-0166-2
Puccio, S. et al. CRUSTY: a versatile web platform for the rapid analysis and visualization of high-dimensional flow cytometry data. Nat. Commun. 14, 5102 (2023).
pubmed: 37666818 pmcid: 10477295 doi: 10.1038/s41467-023-40790-0
Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
pubmed: 28091601 pmcid: 5241818 doi: 10.1038/ncomms14049
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
pubmed: 29409532 pmcid: 5802054 doi: 10.1186/s13059-017-1382-0
Moerman, T. et al. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35, 2159–2161 (2019).
pubmed: 30445495 doi: 10.1093/bioinformatics/bty916
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308 doi: 10.1093/bioinformatics/btp616
Zambelli, F., Pesole, G. & Pavesi, G. Pscan: finding over-represented transcription factor binding site motifs in sequences from co-regulated or co-expressed genes. Nucleic Acids Res. 37, W247–W252 (2009).
pubmed: 19487240 pmcid: 2703934 doi: 10.1093/nar/gkp464
Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).
pubmed: 26083756 pmcid: 4685948 doi: 10.1038/nature14590
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168 pmcid: 2705234 doi: 10.1093/bioinformatics/btp324
Goeman, J. J., van de Geer, S. A., de Kort, F. & van Houwelingen, H. C. A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 20, 93–99 (2004).
pubmed: 14693814 doi: 10.1093/bioinformatics/btg382
Kaymak, I. et al. Carbon source availability drives nutrient utilization in CD8
pubmed: 35981545 pmcid: 10068808 doi: 10.1016/j.cmet.2022.07.012
Scirgolea, C. et al. Dataset #1 related to article “NaCl enhances CD8
Scirgolea, C. et al. Dataset #2 related to article “NaCl enhances CD8

Auteurs

Caterina Scirgolea (C)

IRCCS Humanitas Research Hospital, Milan, Italy.

Rosa Sottile (R)

IRCCS Humanitas Research Hospital, Milan, Italy.

Marco De Luca (M)

IRCCS Humanitas Research Hospital, Milan, Italy.

Alberto Susana (A)

IRCCS Humanitas Research Hospital, Milan, Italy.

Silvia Carnevale (S)

IRCCS Humanitas Research Hospital, Milan, Italy.

Simone Puccio (S)

IRCCS Humanitas Research Hospital, Milan, Italy.
Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Milan, Italy.

Valentina Ferrari (V)

IRCCS Humanitas Research Hospital, Milan, Italy.

Veronica Lise (V)

IRCCS Humanitas Research Hospital, Milan, Italy.

Giorgia Contarini (G)

IRCCS Humanitas Research Hospital, Milan, Italy.

Alice Scarpa (A)

IRCCS Humanitas Research Hospital, Milan, Italy.

Eloise Scamardella (E)

IRCCS Humanitas Research Hospital, Milan, Italy.

Simona Feno (S)

IRCCS Humanitas Research Hospital, Milan, Italy.

Chiara Camisaschi (C)

IRCCS Humanitas Research Hospital, Milan, Italy.

Gabriele De Simone (G)

IRCCS Humanitas Research Hospital, Milan, Italy.

Gianluca Basso (G)

IRCCS Humanitas Research Hospital, Milan, Italy.

Desiree Giuliano (D)

IRCCS Humanitas Research Hospital, Milan, Italy.

Emilia Maria Cristina Mazza (EMC)

IRCCS Humanitas Research Hospital, Milan, Italy.

Luca Gattinoni (L)

Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
University of Regensburg, Regensburg, Germany.
Center for Immunomedicine in Transplantation and Oncology (CITO), University Hospital Regensburg, Regensburg, Germany.

Rahul Roychoudhuri (R)

Department of Pathology, University of Cambridge, Cambridge, UK.
Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK.

Emanuele Voulaz (E)

Department of Biomedical Sciences, Humanitas University, Milan, Italy.
Division of Thoracic, IRCCS Humanitas Research Hospital, Milan, Italy.

Diletta Di Mitri (D)

IRCCS Humanitas Research Hospital, Milan, Italy.
Department of Biomedical Sciences, Humanitas University, Milan, Italy.

Matteo Simonelli (M)

IRCCS Humanitas Research Hospital, Milan, Italy.
Department of Biomedical Sciences, Humanitas University, Milan, Italy.

Agnese Losurdo (A)

IRCCS Humanitas Research Hospital, Milan, Italy.

Davide Pozzi (D)

IRCCS Humanitas Research Hospital, Milan, Italy.
Department of Biomedical Sciences, Humanitas University, Milan, Italy.

Carlson Tsui (C)

The Peter Doherty Institute for Infection and Immunity and Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.

Axel Kallies (A)

The Peter Doherty Institute for Infection and Immunity and Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.

Sara Timo (S)

IRCCS Humanitas Research Hospital, Milan, Italy.

Giuseppe Martano (G)

IRCCS Humanitas Research Hospital, Milan, Italy.
Institute of Neuroscience, National Research Council of Italy (CNR) c/o Humanitas Mirasole S.p.A, Milan, Italy.

Elettra Barberis (E)

Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy.

Marcello Manfredi (M)

Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.

Maria Rescigno (M)

IRCCS Humanitas Research Hospital, Milan, Italy.
Department of Biomedical Sciences, Humanitas University, Milan, Italy.

Sebastien Jaillon (S)

IRCCS Humanitas Research Hospital, Milan, Italy.
Department of Biomedical Sciences, Humanitas University, Milan, Italy.

Enrico Lugli (E)

IRCCS Humanitas Research Hospital, Milan, Italy. enrico.lugli@humanitasresearch.it.

Classifications MeSH