NaCl enhances CD8
Journal
Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354
Informations de publication
Date de publication:
28 Aug 2024
28 Aug 2024
Historique:
received:
20
10
2023
accepted:
10
07
2024
medline:
31
8
2024
pubmed:
31
8
2024
entrez:
28
8
2024
Statut:
aheadofprint
Résumé
CD8
Identifiants
pubmed: 39198631
doi: 10.1038/s41590-024-01923-9
pii: 10.1038/s41590-024-01923-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : AIRC IG 2017 - ID 20676
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : AIRC IG 2022 - ID 27391
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : AIRC 5×1000 program UniCanVax 22757
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : AIRC/FIRC fellowship
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : AIRC/FIRC fellowship
Organisme : Cancer Research Institute (CRI)
ID : CRI Lloyd J. Old STAR (CRI award 3914)
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Mahnke, Y. D., Brodie, T. M., Sallusto, F., Roederer, M. & Lugli, E. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur. J. Immunol. 43, 2797–2809 (2013).
pubmed: 24258910
doi: 10.1002/eji.201343751
McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).
pubmed: 30676822
doi: 10.1146/annurev-immunol-041015-055318
Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).
pubmed: 31207605
doi: 10.1038/s41586-019-1326-9
Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).
pubmed: 25838376
doi: 10.1126/science.aaa6204
Zehn, D., Thimme, R., Lugli, E., de Almeida, G. P. & Oxenius, A. ‘Stem-like’ precursors are the fount to sustain persistent CD8
pubmed: 35624209
doi: 10.1038/s41590-022-01219-w
Park, J., Hsueh, P. C., Li, Z. & Ho, P. C. Microenvironment-driven metabolic adaptations guiding CD8
pubmed: 36630916
doi: 10.1016/j.immuni.2022.12.008
Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).
pubmed: 24792914
pmcid: 4074507
doi: 10.1016/j.immuni.2014.04.007
Clausen, M. V., Hilbers, F. & Poulsen, H. The structure and function of the Na,K-ATPase isoforms in health and disease. Front. Physiol. 8, 371 (2017).
pubmed: 28634454
pmcid: 5459889
doi: 10.3389/fphys.2017.00371
Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).
pubmed: 23746840
pmcid: 3804311
doi: 10.1016/j.cell.2013.05.016
Wang, C. et al. CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell 163, 1413–1427 (2015).
pubmed: 26607793
pmcid: 4671820
doi: 10.1016/j.cell.2015.10.068
Leone, R. D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019).
pubmed: 31699883
pmcid: 7023461
doi: 10.1126/science.aav2588
Chapman, N. M. & Chi, H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity 55, 14–30 (2022).
pubmed: 35021054
pmcid: 8842882
doi: 10.1016/j.immuni.2021.12.012
Eil, R. et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 537, 539–543 (2016).
pubmed: 27626381
pmcid: 5204372
doi: 10.1038/nature19364
Lotscher, J. et al. Magnesium sensing via LFA-1 regulates CD8
pubmed: 35051368
doi: 10.1016/j.cell.2021.12.039
Heintzman, D. R., Fisher, E. L. & Rathmell, J. C. Microenvironmental influences on T cell immunity in cancer and inflammation. Cell Mol. Immunol. 19, 316–326 (2022).
pubmed: 35039633
pmcid: 8762638
doi: 10.1038/s41423-021-00833-2
Wilck, N. et al. Salt-responsive gut commensal modulates T
pubmed: 29143823
pmcid: 6070150
doi: 10.1038/nature24628
Wu, C. et al. Induction of pathogenic T
pubmed: 23467085
pmcid: 3637879
doi: 10.1038/nature11984
Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic T
pubmed: 23467095
pmcid: 3746493
doi: 10.1038/nature11868
Matthias, J. et al. Salt generates antiinflammatory Th17 cells but amplifies pathogenicity in proinflammatory cytokine microenvironments. J. Clin. Invest. 130, 4587–4600 (2020).
pubmed: 32484796
pmcid: 7456214
doi: 10.1172/JCI137786
Luo, Y. et al. Negligible effect of sodium chloride on the development and function of TGF-β-induced CD4
pubmed: 30759396
pmcid: 6948355
doi: 10.1016/j.celrep.2019.01.066
Hernandez, A. L. et al. Sodium chloride inhibits the suppressive function of FOXP3
pubmed: 26524592
pmcid: 4639983
doi: 10.1172/JCI81151
He, W. et al. High-salt diet inhibits tumour growth in mice via regulating myeloid-derived suppressor cell differentiation. Nat. Commun. 11, 1732 (2020).
pubmed: 32265505
pmcid: 7138858
doi: 10.1038/s41467-020-15524-1
Rizvi, Z. A. et al. High-salt diet mediates interplay between NK cells and gut microbiota to induce potent tumor immunity. Sci. Adv. 7, eabg5016 (2021).
pubmed: 34516769
pmcid: 8442882
doi: 10.1126/sciadv.abg5016
Hofer, T., Krichevsky, O. & Altan-Bonnet, G. Competition for IL-2 between regulatory and effector T cells to chisel immune responses. Front. Immunol. 3, 268 (2012).
pubmed: 22973270
pmcid: 3433682
doi: 10.3389/fimmu.2012.00268
Pilipow, K. et al. Antioxidant metabolism regulates CD8
pubmed: 30232291
pmcid: 6237218
doi: 10.1172/jci.insight.122299
Matthias, J. et al. Sodium chloride is an ionic checkpoint for human T
pubmed: 30787167
doi: 10.1126/scitranslmed.aau0683
Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011).
pubmed: 21926977
pmcid: 3192229
doi: 10.1038/nm.2446
Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).
pubmed: 22195744
pmcid: 3248798
doi: 10.1016/j.immuni.2011.09.021
Rutishauser, R. L. et al. Transcriptional repressor Blimp-1 promotes CD8
pubmed: 19664941
pmcid: 2783637
doi: 10.1016/j.immuni.2009.05.014
Kallies, A., Xin, A., Belz, G. T. & Nutt, S. L. Blimp-1 transcription factor is required for the differentiation of effector CD8
pubmed: 19664942
doi: 10.1016/j.immuni.2009.06.021
Galletti, G. et al. Two subsets of stem-like CD8
pubmed: 33046887
pmcid: 7610790
doi: 10.1038/s41590-020-0791-5
Giordano, M. et al. Molecular profiling of CD8 T cells in autochthonous melanoma identifies Maf as driver of exhaustion. EMBO J. 34, 2042–2058 (2015).
pubmed: 26139534
pmcid: 4551351
doi: 10.15252/embj.201490786
Chu, Y. et al. Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance. Nat. Med. 29, 1550–1562 (2023).
pubmed: 37248301
doi: 10.1038/s41591-023-02371-y
Corte-Real, B. F. et al. Sodium perturbs mitochondrial respiration and induces dysfunctional Tregs. Cell Metab. 35, 299–315.e8 (2023).
pubmed: 36754020
doi: 10.1016/j.cmet.2023.01.009
Wu, T. et al. The TCF1–Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci. Immunol. 1, eaai8593 (2016).
pubmed: 28018990
pmcid: 5179228
doi: 10.1126/sciimmunol.aai8593
Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
pubmed: 28991892
pmcid: 5937676
doi: 10.1038/nmeth.4463
Chen, Z. et al. In vivo CD8
pubmed: 33636129
pmcid: 8054351
doi: 10.1016/j.cell.2021.02.019
Milner, J. J. et al. Runx3 programs CD8
pubmed: 29211713
pmcid: 5747964
doi: 10.1038/nature24993
Klebanoff, C. A. et al. Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptor-engineered adoptive immunotherapy. JCI Insight 2, e95103 (2017).
pubmed: 29212954
pmcid: 5752304
doi: 10.1172/jci.insight.95103
Tsui, C. et al. MYB orchestrates T cell exhaustion and response to checkpoint inhibition. Nature 609, 354–360 (2022).
pubmed: 35978192
pmcid: 9452299
doi: 10.1038/s41586-022-05105-1
Lugli, E., Galletti, G., Boi, S. K. & Youngblood, B. A. Stem, effector, and hybrid states of memory CD8
pubmed: 31810790
doi: 10.1016/j.it.2019.11.004
Luoma, A. M. et al. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy. Cell 185, 2918–2935.e29 (2022).
pubmed: 35803260
pmcid: 9508682
doi: 10.1016/j.cell.2022.06.018
Brummelman, J. et al. High-dimensional single cell analysis identifies stem-like cytotoxic CD8
pubmed: 30154266
pmcid: 6170179
doi: 10.1084/jem.20180684
Wischnewski, V. et al. Phenotypic diversity of T cells in human primary and metastatic brain tumors revealed by multiomic interrogation. Nat. Cancer 4, 908–924 (2023).
pubmed: 37217652
pmcid: 10293012
doi: 10.1038/s43018-023-00566-3
Simoni, Y. et al. Bystander CD8
pubmed: 29769722
doi: 10.1038/s41586-018-0130-2
Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat. Commun. 9, 2724 (2018).
pubmed: 30006565
pmcid: 6045647
doi: 10.1038/s41467-018-05072-0
Fairfax, B. P. et al. Peripheral CD8
pubmed: 32042196
pmcid: 7611047
doi: 10.1038/s41591-019-0734-6
Caushi, J. X. et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature 596, 126–132 (2021).
pubmed: 34290408
pmcid: 8338555
doi: 10.1038/s41586-021-03752-4
Yoo, H. C., Yu, Y. C., Sung, Y. & Han, J. M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 52, 1496–1516 (2020).
pubmed: 32943735
pmcid: 8080614
doi: 10.1038/s12276-020-00504-8
Schulte, M. L. et al. Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat. Med. 24, 194–202 (2018).
pubmed: 29334372
pmcid: 5803339
doi: 10.1038/nm.4464
Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D. & Thompson, C. B. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413–416 (2015).
pubmed: 25487152
doi: 10.1038/nature13981
Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).
pubmed: 19372391
pmcid: 2715015
doi: 10.1126/science.1170116
Liu, P. S. et al. α-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18, 985–994 (2017).
pubmed: 28714978
doi: 10.1038/ni.3796
Roychoudhuri, R. et al. BACH2 regulates CD8
pubmed: 27158840
pmcid: 4918801
doi: 10.1038/ni.3441
Li, P. et al. BATF-JUN is critical for IRF4-mediated transcription in T cells. Nature 490, 543–546 (2012).
pubmed: 22992523
pmcid: 3537508
doi: 10.1038/nature11530
Kurachi, M. et al. The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8
pubmed: 24584090
pmcid: 4000237
doi: 10.1038/ni.2834
Gattinoni, L. et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8
pubmed: 15931392
pmcid: 1137001
doi: 10.1172/JCI24480
Grinstein, S., Rothstein, A. & Cohen, S. Mechanism of osmotic activation of Na
pubmed: 2987392
doi: 10.1085/jgp.85.5.765
Leslie, T. K. et al. Sodium homeostasis in the tumour microenvironment. Biochim. Biophys. Acta Rev. Cancer 1872, 188304 (2019).
pubmed: 31348974
pmcid: 7115894
doi: 10.1016/j.bbcan.2019.07.001
Grinstein, S., Clarke, C. A. & Rothstein, A. Activation of Na
pubmed: 6644271
doi: 10.1085/jgp.82.5.619
Stanton, B. A. & Kaissling, B. Regulation of renal ion transport and cell growth by sodium. Am. J. Physiol. 257, F1–F10 (1989).
pubmed: 2546443
Aramburu, J. & Lopez-Rodriguez, C. Regulation of inflammatory functions of macrophages and T lymphocytes by NFAT5. Front. Immunol. 10, 535 (2019).
pubmed: 30949179
pmcid: 6435587
doi: 10.3389/fimmu.2019.00535
Scalise, M. et al. Transport mechanism and regulatory properties of the human amino acid transporter ASCT2 (SLC1A5). Amino Acids 46, 2463–2475 (2014).
pubmed: 25052780
doi: 10.1007/s00726-014-1808-x
Soll, D. et al. Sodium chloride in the tumor microenvironment enhances T-cell metabolic fitness and cytotoxicity. Nat. Immunol. https://doi.org/10.1038/s41590-024-01918-6 (2023).
Reinfeld, B. I. et al. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature 593, 282–288 (2021).
pubmed: 33828302
pmcid: 8122068
doi: 10.1038/s41586-021-03442-1
Tille, L. et al. Activation of the transcription factor NFAT5 in the tumor microenvironment enforces CD8
pubmed: 37709986
doi: 10.1038/s41590-023-01614-x
Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017).
pubmed: 28397821
pmcid: 5554367
doi: 10.1038/nature22079
Brummelman, J. et al. Development, application and computational analysis of high-dimensional fluorescent antibody panels for single-cell flow cytometry. Nat. Protoc. 14, 1946–1969 (2019).
pubmed: 31160786
doi: 10.1038/s41596-019-0166-2
Puccio, S. et al. CRUSTY: a versatile web platform for the rapid analysis and visualization of high-dimensional flow cytometry data. Nat. Commun. 14, 5102 (2023).
pubmed: 37666818
pmcid: 10477295
doi: 10.1038/s41467-023-40790-0
Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
pubmed: 28091601
pmcid: 5241818
doi: 10.1038/ncomms14049
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
pubmed: 29409532
pmcid: 5802054
doi: 10.1186/s13059-017-1382-0
Moerman, T. et al. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35, 2159–2161 (2019).
pubmed: 30445495
doi: 10.1093/bioinformatics/bty916
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308
doi: 10.1093/bioinformatics/btp616
Zambelli, F., Pesole, G. & Pavesi, G. Pscan: finding over-represented transcription factor binding site motifs in sequences from co-regulated or co-expressed genes. Nucleic Acids Res. 37, W247–W252 (2009).
pubmed: 19487240
pmcid: 2703934
doi: 10.1093/nar/gkp464
Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).
pubmed: 26083756
pmcid: 4685948
doi: 10.1038/nature14590
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168
pmcid: 2705234
doi: 10.1093/bioinformatics/btp324
Goeman, J. J., van de Geer, S. A., de Kort, F. & van Houwelingen, H. C. A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 20, 93–99 (2004).
pubmed: 14693814
doi: 10.1093/bioinformatics/btg382
Kaymak, I. et al. Carbon source availability drives nutrient utilization in CD8
pubmed: 35981545
pmcid: 10068808
doi: 10.1016/j.cmet.2022.07.012
Scirgolea, C. et al. Dataset #1 related to article “NaCl enhances CD8
Scirgolea, C. et al. Dataset #2 related to article “NaCl enhances CD8