Circadian Regulation of Expression of Carotenoid Metabolism Genes (PSY2, LCYE, CrtRB1, and NCED1) in Leaves of Tomato Solanum lycopersicum L.
Solanum lycopersicum
carotenoid metabolism
circadian rhythm
tomato
Journal
Doklady. Biochemistry and biophysics
ISSN: 1608-3091
Titre abrégé: Dokl Biochem Biophys
Pays: United States
ID NLM: 101126895
Informations de publication
Date de publication:
28 Aug 2024
28 Aug 2024
Historique:
received:
24
06
2024
accepted:
30
06
2024
revised:
30
06
2024
medline:
28
8
2024
pubmed:
28
8
2024
entrez:
28
8
2024
Statut:
aheadofprint
Résumé
The circadian dynamics of the expression of key genes of carotenoid metabolism (PSY2, LCYE, CrtRB1, and NCED1) in the photosynthetic tissue of tomato Solanum lycopersicum L. (cultivar Korneevsky) plants was characterized. An in silico analysis of the gene expression pattern was carried out and a high level of their transcripts was detected in the leaf tissue. qRT-PCR analysis of gene expression was performed at six time points during the day and showed the highest levels of PSY2, LCYE, and NCED1 transcripts in the second half of the light phase and CrtRB1 at the end of the dark phase. The content and composition of carotenoids in leaf tissue in the middle of the day was determined; it was shown that the leaf accumulates 1.5 times more compounds of the ɛ/β-branch of carotenoid biosynthesis pathway than compounds of the β/β-branch.
Identifiants
pubmed: 39196523
doi: 10.1134/S1607672924600611
pii: 10.1134/S1607672924600611
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. Pleiades Publishing, Ltd.
Références
Stra, A., Almarwaey, L.O., and Alagoz, Y., Front. Plant Sci., 2023, vol. 13, p. 1072061.
doi: 10.3389/fpls.2022.1072061
pubmed: 36743580
pmcid: 9891708
Stauder, R., Welsch, R., Camagna, M., et al., Front. Plant Sci., 2018, vol. 9, p. 255.
doi: 10.3389/fpls.2018.00255
pubmed: 29545815
pmcid: 5838088
Li, F., Vallabhaneni, R., Yu, J., Rocheford, T., et al., Plant Physiol., 2008, vol. 147, no. 3, pp. 1334–1346.
doi: 10.1104/pp.108.122119
pubmed: 18508954
pmcid: 2442542
Ezquerro, M., Burbano-Erazo, E., and Rodriguez-Concepcion, M., Plant Physiol., 2023, vol. 193, no. 3, pp. 2021–2036.
doi: 10.1093/plphys/kiad425
pubmed: 37474108
pmcid: 10602605
Laporte, M.F., Vachev, M., Fenn, M., et al., G3 (Bethesda), 2022, vol. 12, no. 3, p. jkac006.
Hu, L., Feng, S., Liang, G., et al., AMB Express, 2021, vol. 11, no. 1, p. 83.
doi: 10.1186/s13568-021-01242-4
pubmed: 34097133
pmcid: 8185118
López-Ráez, J.A., Kohlen, W., and Charnikhova, T., New Phytol., 2010, vol. 187, pp. 343–354.
doi: 10.1111/j.1469-8137.2010.03291.x
pubmed: 20487312
Zhang, M., Yuan, B., and Leng, P., J. Exp. Bot., 2009, vol. 60, pp. 1579–1588.
doi: 10.1093/jxb/erp026
pubmed: 19246595
pmcid: 2671613
Kai, W., Fu, Y., Wang, J., and Liang, B., Sci. Rep., 2019, vol. 9, p. 16943.
doi: 10.1038/s41598-019-52948-2
pubmed: 31729411
pmcid: 6858371
Yang, R., Yang, T., Zhang, H., et al., Plant Physiol. Biochem., 2014, vol. 77, pp. 23–34.
doi: 10.1016/j.plaphy.2014.01.015
pubmed: 24531233
Yari Kamrani, Y., Shomali, A., Aliniaeifard, S., et al., Cells, 2022, vol. 11, no. 7, p. 1154.
doi: 10.3390/cells11071154
pubmed: 35406719
pmcid: 8997731
Li, F., Vallabhaneni, R., Yu, J., Rocheford, T., et al., Plant Physiol., 2008, vol. 147, pp. 1334–1346.
doi: 10.1104/pp.108.122119
pubmed: 18508954
pmcid: 2442542
Sun, T.H., Liu, C.Q., Hui, Y.Y., et al., J. Integr. Plant Biol., 2010, vol. 52, pp. 868–878.
doi: 10.1111/j.1744-7909.2010.00993.x
pubmed: 20883439
Baek, D., Kim, W.Y., Cha, J.Y., et al., Plant Physiol., 2020, vol. 184, no. 1, pp. 443–458.
doi: 10.1104/pp.20.00779
pubmed: 32690755
pmcid: 7479899
Efremov, G.I., Ashikhmin, A.A., and Shchenni-kova, A.V., Russ. J. Plant Physiol., 2023, vol. 70, no. 2, p. 17.
doi: 10.1134/S1021443722602701