Repeated migration, interbreeding and bottlenecking shaped the phylogeography of the selfing grass Brachypodium stacei.
Brachypodium model species
Mediterranean and Macaronesian aridic niches
phylogeography
plastome capture
recent radiation
repeated dispersals and extinctions
Journal
Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478
Informations de publication
Date de publication:
26 Aug 2024
26 Aug 2024
Historique:
revised:
24
07
2024
received:
26
12
2023
accepted:
13
08
2024
medline:
27
8
2024
pubmed:
27
8
2024
entrez:
27
8
2024
Statut:
aheadofprint
Résumé
Brachypodium stacei is the most ancestral lineage in the genus Brachypodium, a model system for grass functional genomics. B. stacei shows striking and sometimes contradictory biological and evolutionary features, including a high selfing rate yet extensive admixture, an ancient Miocene origin yet with recent evolutionary radiation, and adaptation to different dry climate conditions in its narrow distribution range. Therefore, it constitutes an ideal system to study these life history traits. We studied the phylogeography of 17 native circum-Mediterranean B. stacei populations (39 individuals) using genome-wide RADseq SNP data and complete plastome sequences. Nuclear SNP data revealed the existence of six distinct genetic clusters, low levels of intra-population genetic diversity and high selfing rates, albeit with signatures of admixture. Coalescence-based dating analysis detected a recent split between crown lineages in the Late Quaternary. Plastome sequences showed incongruent evolutionary relationships with those recovered by the nuclear data, suggesting interbreeding and chloroplast capture events between genetically distant populations. Demographic and population dispersal coalescent models identified an ancestral origin of B. stacei in the western-central Mediterranean islands, followed by an early colonization of the Canary Islands and two independent colonization events of the eastern Mediterranean region through long-distance dispersal and bottleneck events as the most likely evolutionary history. Climate niche data identified three arid niches of B. stacei in the southern Mediterranean region. Our findings indicate that the phylogeography of B. stacei populations was shaped by recent radiations, frequent extinctions, long-distance dispersal events, occasional interbreeding, and adaptation to local climates.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e17513Subventions
Organisme : Spanish Ministry of Science and Innovation
ID : TED2021-131073B-I00
Organisme : Spanish Ministry of Science and Innovation
ID : PDC2022-133712-I00
Organisme : Gobierno de Aragon
ID : A01-23R
Informations de copyright
© 2024 The Author(s). Molecular Ecology published by John Wiley & Sons Ltd.
Références
Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model‐based estimation of ancestry in unrelated individuals. Genome Research, 19(9), 1655–1664. https://doi.org/10.1101/gr.094052.109
Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., Selker, E. U., Cresko, W. A., & Johnson, E. A. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One, 3(10), e3376.
Barrett, S. C. H., Arunkumar, R., & Wright, S. I. (2014). The demography and population genomics of evolutionary transitions to self‐fertilization in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1648), 20130344. https://doi.org/10.1098/rstb.2013.0344
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.‐H., Xie, D., Suchard, M. A., Rambaut, A., & Drummond, A. J. (2014). BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10(4), e1003537.
Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N. A., & RoyChoudhury, A. (2012). Inferring species trees directly from biallelic genetic markers: Bypassing gene trees in a full coalescent analysis. Molecular Biology and Evolution, 29(8), 1917–1932.
Bushnell, B. (2014). BBMap: A fast, accurate, splice‐aware aligner. Lawrence Berkeley National Lab (LBNL).
Cardillo, M., & Warren, D. L. (2016). Analysing patterns of spatial and niche overlap among species at multiple resolutions. Global Ecology and Biogeography, 25(8), 951–963. https://doi.org/10.1111/geb.12455
Catalán, P., López‐Álvarez, D., Bellosta, C., & Villar, L. (2016). Updated taxonomic descriptions, iconography, and habitat preferences of Brachypodium distachyon, B. stacei, and B. hybridum (Poaceae). Anales Jardin Botánico Madrid, 73(1), e028. https://doi.org/10.3989/ajbm.2428
Catalan, P., López‐Álvarez, D., Díaz‐Pérez, A., Sancho, R., & López‐Herránz, M. L. (2016). Phylogeny and evolution of the genus Brachypodium. In P. J. Vogel (Ed.), Genetics and genomics of Brachypodium (pp. 9–38). Springer. https://doi.org/10.1007/7397_2015_17
Catalán, P., Müller, J., Hasterok, R., Jenkins, G., Mur, L. A. J., Langdon, T., Betekhtin, A., Siwinska, D., Pimentel, M., & López‐Alvarez, D. (2012). Evolution and taxonomic split of the model grass Brachypodium distachyon. Annals of Botany, 109(2), 385–405. https://doi.org/10.1093/aob/mcr294
Charlesworth, D. (2003). Effects of inbreeding on the genetic diversity of populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1434), 1051–1070. https://doi.org/10.1098/rstb.2003.1296
Collin, F., Durif, G., Raynal, L., Lombaert, E., Gautier, M., Vitalis, R., Marin, J., & Estoup, A. (2021). Extending approximate Bayesian computation with supervised machine learning to infer demographic history from genetic polymorphisms using DIYABC random forest. Molecular Ecology Resources, 21(8), 2598–2613. https://doi.org/10.1111/1755‐0998.13413
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., & Durbin, R. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156–2158. https://doi.org/10.1093/bioinformatics/btr330
Díaz‐Pérez, A., López‐Álvarez, D., Sancho, R., & Catalán, P. (2018). Reconstructing the origins and the biogeography of species' genomes in the highly reticulate allopolyploid‐rich model grass genus Brachypodium using minimum evolution, coalescence and maximum likelihood approaches. Molecular Phylogenetics and Evolution, 127, 256–271. https://doi.org/10.1016/j.ympev.2018.06.003
Dierckxsens, N., Mardulyn, P., & Smits, G. (2017). NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Research, 45(4), e18. https://doi.org/10.1093/nar/gkw955
Dinh Thi, V. H., Coriton, O., Le Clainche, I., Arnaud, D., Gordon, S. P., Linc, G., Catalan, P., Hasterok, R., Vogel, J. P., Jahier, J., & Chalhoub, B. (2016). Recreating stable Brachypodium hybridum allotetraploids by uniting the divergent genomes of B. distachyon and B. stacei. PLoS One, 11(12), e0167171. https://doi.org/10.1371/journal.pone.0167171
Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19(1), 11–15.
Eaton, D. A. R., & Overcast, I. (2020). Ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics, 36(8), 2592–2594. https://doi.org/10.1093/bioinformatics/btz966
Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and windows. Molecular Ecology Resources, 10(3), 564–567.
Feliner, G. N. (2011). Southern European glacial refugia: A tale of tales. Taxon, 60(2), 365–372. https://doi.org/10.1002/tax.602007
Francis, R. M. (2017). Pophelper: An R package and web app to analyse and visualize population structure. Molecular Ecology Resources, 17(1), 27–32.
Gaut, B., Yang, L., Takuno, S., & Eguiarte, L. E. (2011). The patterns and causes of variation in plant nucleotide substitution rates. Annual Review of Ecology, Evolution, and Systematics, 42(1), 245–266. https://doi.org/10.1146/annurev‐ecolsys‐102710‐145119
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z. L., & Zhang, M. (2011). The community climate system model version 4. Journal of Climate, 24(19), 4973–4991. https://doi.org/10.1175/2011JCLI4083.1
Gordon, S. P., Contreras‐Moreira, B., Levy, J. J., Djamei, A., Czedik‐Eysenberg, A., Tartaglio, V. S., Session, A., Martin, J., Cartwright, A., Katz, A., Singan, V. R., Goltsman, E., Barry, K., Dinh‐Thi, V. H., Chalhoub, B., Diaz‐Perez, A., Sancho, R., Lusinska, J., Wolny, E., … Vogel, J. P. (2020). Gradual polyploid genome evolution revealed by pan‐genomic analysis of Brachypodium hybridum and its diploid progenitors. Nature Communications, 11(1), 1–16. https://doi.org/10.1038/s41467‐020‐17302‐5
Gordon, S. P., Contreras‐Moreira, B., Woods, D. P., Des Marais, D. L., Burgess, D., Shu, S., Stritt, C., Roulin, A. C., Schackwitz, W., & Tyler, L. (2017). Extensive gene content variation in the Brachypodium distachyon pan‐genome correlates with population structure. Nature Communications, 8(1), 1–13.
Greer, S. U., Wright, S. I., & Eckert, C. G. (2023). Population bottleneck associated with but likely preceded the recent evolution of self‐fertilization in a coastal dune plant. Evolution; International Journal of Organic Evolution, 77(2), 454–466. https://doi.org/10.1093/evolut/qpac047
Guerrero, R. F., & Kirkpatrick, M. (2014). Local adaptation and the evolution of chromosome fusions. Evolution, 68(10), 2747–2756. https://doi.org/10.1111/evo.12481
Hasterok, R., Catalan, P., Hazen, S. P., Roulin, A. C., Vogel, J. P., Wang, K., & Mur, L. A. J. (2022). Brachypodium: 20 years as a grass biology model system; the way forward? Trends in Plant Science, 27(10), 1002–1016. https://doi.org/10.1016/j.tplants.2022.04.008
Holsinger, K. E. (2000). Reproductive systems and evolution in vascular plants. Proceedings of the National Academy of Sciences of the United States of America, 97(13), 7037–7042. https://doi.org/10.1073/pnas.97.13.7037
Jakob, S. S., & Blattner, F. R. (2006). A chloroplast genealogy of Hordeum (Poaceae): Long‐term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Molecular Biology and Evolution, 23(8), 1602–1612. https://doi.org/10.1093/molbev/msl018
Jombart, T. (2008). Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403–1405.
Jombart, T., & Collins, C. (2015). A tutorial for discriminant analysis of principal components (DAPC) using adegenet 2.0. 0. Imperial College London, MRC Centre for Outbreak Analysis and Modelling.
Kadereit, J. W., & Abbott, R. J. (2021). Plant speciation in the quaternary. Plant Ecology & Diversity, 14(3–4), 105–142. https://doi.org/10.1080/17550874.2021.2012849
Lawson, C. R., Hodgson, J. A., Wilson, R. J., & Richards, S. A. (2014). Prevalence, thresholds and the performance of presence–absence models. Methods in Ecology and Evolution, 5(1), 54–64. https://doi.org/10.1111/2041‐210X.12123
Letunic, I., & Bork, P. (2021). Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/NAR/GKAB301
Li, Y., & Liu, J. (2018). StructureSelector: A web‐based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources, 18(1), 176–177.
Lopez‐Alvarez, D., Manzaneda, A. J., Rey, P. J., Giraldo, P., Benavente, E., Allainguillaume, J., Mur, L., Caicedo, A. L., Hazen, S. P., Breiman, A., Ezrati, S., & Catalan, P. (2015). Environmental niche variation and evolutionary diversification of the Brachypodium distachyon grass complex species in their native circum‐Mediterranean Range. American Journal of Botany, 102(7), 1073–1088. https://doi.org/10.3732/ajb.1500128
López‐Álvarez, D., Zubair, H., Beckmann, M., Draper, J., & Catalán, P. (2017). Diversity and association of phenotypic and metabolomic traits in the close model grasses Brachypodium distachyon, B. stacei and B. hybridum. Annals of Botany, 119(4), 545–561. https://doi.org/10.1093/aob/mcw239
Mairal, M., García‐, C., Le Roux, J. J., Chau, J. H., Jansen, B., Cang, V. V., Münzbergová, Z., Chown, S. L., & Shaw, J. D. (2023). Multiple introductions, polyploidy and mixed reproductive strategies are linked to genetic diversity and structure in the most widespread invasive plant across Southern Ocean archipelagos. Molecular Ecology, 32(4), 756–771. https://doi.org/10.1111/mec.16809
Mandáková, T., & Lysak, M. A. (2018). Post‐polyploid diploidization and diversification through dysploid changes. Current Opinion in Plant Biology, 42, 55–65. https://doi.org/10.1016/j.pbi.2018.03.001
Marques, I., Shiposha, V., López‐Alvarez, D., Manzaneda, A. J., Hernandez, P., Olonova, M., & Catalán, P. (2017). Environmental isolation explains Iberian genetic diversity in the highly homozygous model grass Brachypodium distachyon. BMC Evolutionary Biology, 17(1), 1–14.
Médail, F., & Diadema, K. (2009). Glacial refugia influence plant diversity patterns in the Mediterranean Basin. Journal of Biogeography, 36(7), 1333–1345. https://doi.org/10.1111/j.1365‐2699.2008.02051.x
Mijangos, J. L., Gruber, B., Berry, O., Pacioni, C., & Georges, A. (2022). dartR v2: An accessible genetic analysis platform for conservation, ecology and agriculture. Methods in Ecology and Evolution, 13(10), 2150–2158. https://doi.org/10.1111/2041‐210X.13918
Milanesi, M., Capomaccio, S., Vajana, E., Bomba, L., Garcia, J. F., Ajmone‐Marsan, P., & Colli, L. (2017). BITE: An R package for biodiversity analyses. BioRxiv, 181610.
Minadakis, N., Williams, H., Horvath, R., Caković, D., Stritt, C., Thieme, M., Bourgeois, Y., & Roulin, A. C. (2023). The demographic history of the wild crop relative Brachypodium distachyon is shaped by distinct past and present ecological niches. Peer Community Journal, 3, e84. https://doi.org/10.24072/pcjournal.319
Mittermeier, R., Gil, P., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C. G., Lamoreux, J., Da Fonseca, G., & Saligmann, P. (2004). Hotspots revisited Earth's biologically richest and most endangered terrestrial ecoregions. Cemex.
Mu, W., Li, K., Yang, Y., Breiman, A., Lou, S., Yang, J., Wu, Y., Wu, S., Liu, J., Nevo, E., & Catalan, P. (2023). Scattered differentiation of unlinked loci across the genome underlines ecological divergence of the selfing grass Brachypodium stacei. Proceedings of the National Academy of Sciences of the United States of America, 120(45), e2304848120. https://doi.org/10.1073/pnas.2304848120
Mu, W., Li, K., Yang, Y., Breiman, A., Yang, J., Wu, Y., Zhu, M., Wang, S., Catalan, P., Nevo, E., & Liu, J. (2023). Subgenomic stability of progenitor genomes during repeated allotetraploid origins of the same grass Brachypodium hybridum. Molecular Biology and Evolution, 40(12), 1–20. https://doi.org/10.1093/molbev/msad259
Nguyen, L.‐T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ‐TREE: A fast and effective stochastic algorithm for estimating maximum‐likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300
Otto‐Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H., & Hu, A. (2006). Simulating arctic climate warmth and icefield retreat in the last interglaciation. Science, 311(5768), 1751–1753. https://doi.org/10.1126/SCIENCE.1120808
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012). Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non‐model species. PLoS One, 7(5), e37135. https://doi.org/10.1371/journal.pone.0037135
Phillips, S. J., Dudík, M., & Schapire, R. E. (2021). Maxent software for modeling species niches and distributions (Version 3.4. 1). 2018, 5–21. http://biodiversityinformatics.amnh.org/open_source/maxent/accessed on
Pickrell, J. K., & Pritchard, J. K. (2012). Inference of population splits and mixtures from genome‐wide allele frequency data. PLoS Genetics, 8(11), e1002967. https://doi.org/10.1371/journal.pgen.1002967
Pudlo, P., Marin, J. M., Estoup, A., Cornuet, J. M., Gautier, M., & Robert, C. P. (2016). Reliable ABC model choice via random forests. Bioinformatics, 32(6), 859–866. https://doi.org/10.1093/bioinformatics/btv684
Puechmaille, S. J. (2016). The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16(3), 608–627.
QGIS Development Team. (2023). QGIS Geographic Information System.
Raj, A., Stephens, M., & Pritchard, J. K. (2014). fastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics, 197(2), 573–589.
Ritland, K. (1990). Inferences about inbreeding depression based on changes of the inbreeding coefficient. Evolution, 44(5), 1230–1241.
Roessler, K., Muyle, A., Diez, C. M., Gaut, G. R. J., Bousios, A., Stitzer, M. C., Seymour, D. K., Doebley, J. F., Liu, Q., & Gaut, B. S. (2019). The genome‐wide dynamics of purging during selfing in maize. Nature plants, 5(9), 980–990. https://doi.org/10.1038/s41477‐019‐0508‐7
Sancho, R., Cantalapiedra, C. P., López‐Alvarez, D., Gordon, S. P., Vogel, J. P., Catalán, P., & Contreras‐Moreira, B. (2018). Comparative plastome genomics and phylogenomics of Brachypodium: Flowering time signatures, introgression and recombination in recently diverged ecotypes. New Phytologist, 218(4), 1631–1644. https://doi.org/10.1111/NPH.14926
Sancho, R., Inda, L. A., Díaz‐Pérez, A., Des Marais, D. L., Gordon, S., Vogel, J. P., Lusinska, J., Hasterok, R., Contreras‐Moreira, B., & Catalán, P. (2022). Tracking the ancestry of known and ‘ghost’ homeologous subgenomes in model grass Brachypodium polyploids. Plant Journal, 109(6), 1535–1558. https://doi.org/10.1111/tpj.15650
Scarlett, V. T., Lovell, J. T., Shao, M., Phillips, J., Shu, S., Goodstein, D. M., Jenkins, J., Grimwood, J., Barry, K., Chalhoub, B., Hasterok, R., Catala, P., Vogel, J. P., Lusinska, J., & Schmutz, J. (2022). Multiple origins, one evolutionary trajectory: Gradual evolution characterizes distinct lineages of allotetraploid Brachypodium. Genetics, 223(2), iyac146. https://doi.org/10.1093/genetics/iyac146
Scholthof, K. B. G., Irigoyen, S., Catalan, P., & Mandadi, K. K. (2018). Brachypodium: A monocot grass model genus for plant biology. Plant Cell, 30(8), 1673–1694. https://doi.org/10.1105/tpc.18.00083
Shiposha, V., Catalán, P., Olonova, M., & Marques, I. (2016). Genetic structure and diversity of the selfing model grass Brachypodium stacei (Poaceae) in Western Mediterranean: Out of the Iberian Peninsula and into the islands. PeerJ, 4, e2407. https://doi.org/10.7717/peerj.2407
Shiposha, V., Marques, I., López‐Alvarez, D., Manzaneda, A. J., Hernandez, P., Olonova, M., & Catalán, P. (2020). Multiple founder events explain the genetic diversity and structure of the model allopolyploid grass Brachypodium hybridum in the Iberian Peninsula hotspot. Annals of Botany, 125(4), 625–638. https://doi.org/10.1093/aob/mcz169
Sievert, C. (2020). Interactive web‐based data visualization with R, plotly, and shiny. CRC Press.
Solbrig, O. T. (1976). On the relative advantages of cross‐and self‐fertilization. Annals of the Missouri Botanical Garden, 63, 262–276.
Stritt, C., Gimmi, E. L., Wyler, M., Bakali, A. H., Skalska, A., Hasterok, R., Mur, L. A. J., Pecchioni, N., & Roulin, A. C. (2022). Migration without interbreeding: Evolutionary history of a highly selfing Mediterranean grass inferred from whole genomes. Molecular Ecology, 31(1), 70–85. https://doi.org/10.1111/mec.16207
Suc, J.‐P. (1984). Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature, 307(5950), 429–432. https://doi.org/10.1038/307429a0
Szövényi, P., Devos, N., Weston, D. J., Yang, X., Hock, Z., Shaw, J. A., Shimizu, K. K., McDaniel, S. F., & Wagner, A. (2014). Efficient purging of deleterious mutations in plants with haploid selfing. Genome biology and evolution, 6(5), 1238–1252. https://doi.org/10.1093/gbe/evu099
Tang, D., Chen, M., Huang, X., Zhang, G., Zeng, L., Zhang, G., Wu, S., & Wang, Y. (2023). SRplot: A free online platform for data visualization and graphing. PLoS One, 18(11), e0294236.
Thompson, J. D. (2007). Plant evolution in the Mediterranean. Oxford University Press. https://doi.org/10.1093/ACPROF:OSO/9780198515340.001.0001
Tyler, L., Lee, S. J., Young, N. D., DeIulio, G. A., Benavente, E., Reagon, M., Sysopha, J., Baldini, R. M., Troìa, A., Hazen, S. P., & Caicedo, A. L. (2016). Population structure in the model grass Brachypodium distachyon is highly correlated with flowering differences across broad geographic areas. The Plant Genome, 9(2), 1–55. https://doi.org/10.3835/plantgenome2015.08.0074
Vargas, P., Fernández‐Mazuecos, M., & Heleno, R. (2018). Phylogenetic evidence for a Miocene origin of Mediterranean lineages: Species diversity, reproductive traits and geographical isolation. Plant Biology, 20, 157–165. https://doi.org/10.1111/plb.12626
Vargas, P., Jiménez‐Mejías, P., & Fernández‐Mazuecos, M. (2020). ‘Endangered living fossils’ (ELFs): Long‐term survivors through periods of dramatic climate change. Environmental and Experimental Botany, 170, 103892. https://doi.org/10.1016/j.envexpbot.2019.103892
Vogel, J. P., Tuna, M., Budak, H., Huo, N., Gu, Y. Q., & Steinwand, M. A. (2009). Development of SSR markers and analysis of diversity in Turkish populations of Brachypodium distachyon. BMC Plant Biology, 9(1), 1–11. https://doi.org/10.1186/1471‐2229‐9‐88/FIGURES/5
Warren, D. L., Glor, R. E., Turelli, M., Warren, D. L., Turelli, M., & Glor, Á. R. E. (2010). ENMTools: A toolbox for comparative studies of environmental niche models. Ecography, 33(3), 607–611. https://doi.org/10.1111/J.1600‐0587.2009.06142.X
Wilson, P. B., Streich, J. C., Murray, K. D., Eichten, S. R., Cheng, R., Aitken, N. C., Spokas, K., Warthmann, N., Gordon, S. P., Accession, C., Vogel, J. P., & Borevitz, J. O. (2019). Global diversity of the Brachypodium species complex as a resource for genome‐wide association studies demonstrated for agronomic traits in response to climate. Genetics, 211(1), 317–331. https://doi.org/10.1534/genetics.118.301589
Wright, S. I., Kalisz, S., & Slotte, T. (2013). Evolutionary consequences of self‐fertilization in plants. Proceedings. Biological Sciences, 280(1760), 20130133. https://doi.org/10.1098/RSPB.2013.0133
Zecca, G., Labra, M., & Grassi, F. (2020). Untangling the evolution of American wild grapes: Admixed species and how to find them. Frontiers in Plant Science, 10, 497733.
Zeitler, L., Parisod, C., & Gilbert, K. J. (2023). Purging due to self‐fertilization does not prevent accumulation of expansion load. PLoS Genetics, 19(9), e1010883. https://doi.org/10.1371/journal.pgen.1010883