Harnessing forward multiple scattering for optical imaging deep inside an opaque medium.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
27 Aug 2024
27 Aug 2024
Historique:
received:
05
06
2024
accepted:
14
08
2024
medline:
27
8
2024
pubmed:
27
8
2024
entrez:
26
8
2024
Statut:
epublish
Résumé
As light travels through a disordered medium such as biological tissues, it undergoes multiple scattering events. This phenomenon is detrimental to in-depth optical microscopy, as it causes a drastic degradation of contrast, resolution and brightness of the resulting image beyond a few scattering mean free paths. However, the information about the inner reflectivity of the sample is not lost; only scrambled. To recover this information, a matrix approach of optical imaging can be fruitful. Here, we report on a de-scanned measurement of a high-dimension reflection matrix R via low coherence interferometry. Then, we show how a set of independent focusing laws can be extracted for each medium voxel through an iterative multi-scale analysis of wave distortions contained in R. It enables an optimal and local compensation of forward multiple scattering paths and provides a three-dimensional confocal image of the sample as the latter one had become digitally transparent. The proof-of-concept experiment is performed on a human opaque cornea and an extension of the penetration depth by a factor five is demonstrated compared to the state-of-the-art.
Identifiants
pubmed: 39187504
doi: 10.1038/s41467-024-51619-9
pii: 10.1038/s41467-024-51619-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7349Subventions
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 610110
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 819261
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-10-LABX-24
Informations de copyright
© 2024. The Author(s).
Références
Gérardin, B., Laurent, J., Derode, A., Prada, C. & Aubry, A. Full transmission and reflection of waves propagating through a maze of disorder. Phys. Rev. Lett. 113, 173901 (2014).
pubmed: 25379917
doi: 10.1103/PhysRevLett.113.173901
Horodynski, M., Kühmayer, M., Ferise, C., Rotter, S. & Davy, M. Anti-reflection structure for perfect transmission through complex media. Nature 607, 281 (2022).
pubmed: 35831599
doi: 10.1038/s41586-022-04843-6
Billy, J. et al. Direct observation of anderson localization of matter waves in a controlled disorder. Nature 453, 891 (2008).
pubmed: 18548065
doi: 10.1038/nature07000
Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E. & van Tiggelen, B. A. Localization of ultrasound in a three-dimensional elastic network. Nat. Phys. 4, 945 (2008).
doi: 10.1038/nphys1101
Ntziachristos, V. Going deeper than microscopy: The optical imaging frontier in biology. Nat. Methods 7, 603 (2010).
pubmed: 20676081
doi: 10.1038/nmeth.1483
Bertolotti, J. & Katz, O. Imaging in complex media. Nat. Phys. 18, 1008 (2022).
doi: 10.1038/s41567-022-01723-8
Dunsby, C. & French, P. Techniques for depth-resolved imaging through turbid media including coherence-gated imaging. J. Phys. D: Appl. Phys. 36, R207 (2003).
doi: 10.1088/0022-3727/36/14/201
Badon, A., Boccara, A. C., Lerosey, G., Fink, M. & Aubry, A. Multiple scattering limit in optical microscopy. Opt. Express 25, 28914 (2017).
doi: 10.1364/OE.25.028914
Huang, D. et al. Optical coherence tomography. Science 254, 1178 (1991).
pubmed: 1957169
pmcid: 4638169
doi: 10.1126/science.1957169
Babcock, H. W. The possibility of compensating astronomical seeing. Publ. Astronomical Soc. Pacific 65, 229 (1953).
doi: 10.1086/126606
Booth, M. J. Adaptive optical microscopy: The ongoing quest for a perfect image. Light Sci Appl 3, e165 (2014).
doi: 10.1038/lsa.2014.46
Tanter, M., Aubry, J.-F., Gerber, J., Thomas, J.-L. & Fink, M. Optimal focusing by spatio-temporal inverse filter. I. Basic principles. J. Acoust. Soc. Am. 110, 37 (2001).
pubmed: 11508962
doi: 10.1121/1.1377051
Derode, A. et al. Taking advantage of multiple scattering to communicate with time-reversal antennas. Phys. Rev. Lett. 90, 014301 (2003).
pubmed: 12570617
doi: 10.1103/PhysRevLett.90.014301
Popoff, S. M. et al. Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).
pubmed: 20366410
doi: 10.1103/PhysRevLett.104.100601
Hsu, C. W., Liew, S. F., Goetschy, A., Cao, H. & Stone, A. D. Correlation-enhanced control of wave focusing in disordered media. Nat. Phys. 13, 497 (2017).
doi: 10.1038/nphys4036
Bouchet, D., Rotter, S. & Mosk, A. P. Maximum information states for coherent scattering measurements. Nat. Phys. 17, 564 (2021).
doi: 10.1038/s41567-020-01137-4
Bender, N. et al. Depth-targeted energy delivery deep inside scattering media. Nat. Phys. 18, 309 (2022).
doi: 10.1038/s41567-021-01475-x
Yoon, S. et al. Deep optical imaging within complex scattering media. Nat. Rev. Phys. 2, 141 (2020).
doi: 10.1038/s42254-019-0143-2
Badon, A. et al. Distortion matrix concept for deep optical imaging in scattering media. Sci. Adv. 6, eaay7170 (2020).
pubmed: 32923603
pmcid: 7455485
doi: 10.1126/sciadv.aay7170
Yoon, S., Lee, H., Hong, J. H., Lim, Y.-S. & Choi, W. Laser scanning reflection-matrix microscopy for aberration-free imaging through intact mouse skull. Nat. Commun. 11, 5721 (2020).
pubmed: 33184297
pmcid: 7665219
doi: 10.1038/s41467-020-19550-x
Lambert, W., Cobus, L. A., Frappart, T., Fink, M. & Aubry, A. Distortion matrix approach for ultrasound imaging of random scattering media. Proc. Natl. Acad. Sci. U.S.A. 117, 14645 (2020).
pubmed: 32522873
pmcid: 7334504
doi: 10.1073/pnas.1921533117
Gigan, S. et al. Roadmap on wavefront shaping and deep imaging in complex media. J. Phys. Photon. 4, 042501 (2022).
doi: 10.1088/2515-7647/ac76f9
Kang, S. et al. High-resolution adaptive optical imaging within thick scattering media using closed-loop accumulation of single scattering. Nat. Commun. 8, 2157 (2017).
pubmed: 29255208
pmcid: 5735168
doi: 10.1038/s41467-017-02117-8
Kwon, Y. et al. Computational conjugate adaptive optics microscopy for longitudinal through-skull imaging of cortical myelin. Nat. Commun. 14, 105 (2023).
pubmed: 36609405
pmcid: 9823103
doi: 10.1038/s41467-022-35738-9
Badon, A., Lerosey, G., Boccara, A. C., Fink, M. & Aubry, A. Retrieving time-dependent Green’s functions in optics with low-coherence interferometry. Phys. Rev. Lett. 114, 023901 (2015).
pubmed: 25635547
doi: 10.1103/PhysRevLett.114.023901
Badon, A. et al. Spatio-temporal imaging of light transport in highly scattering media under white light illumination. Optica 3, 1160 (2016).
doi: 10.1364/OPTICA.3.001160
Beaurepaire, E., Boccara, A. C., Lebec, M., Blanchot, L. & Saint-Jalmes, H. Full-field optical coherence microscopy. Opt. Lett. 23, 244 (1998).
pubmed: 18084473
doi: 10.1364/OL.23.000244
Dubois, A., Vabre, L., Boccara, A.-C. & Beaurepaire, E. High-resolution full-field optical coherence tomography with a Linnik microscope. Appl. Opt. 41, 805 (2002).
pubmed: 11993929
doi: 10.1364/AO.41.000805
Barolle, V. et al. Manifestation of aberrations in full-field optical coherence tomography. Opt. Express 29, 22044 (2021).
pubmed: 34265978
doi: 10.1364/OE.419963
Mertz, J., Introduction to Optical Microscopy, second edition ed. (Cambridge University Press, Cambridge, United Kingdom ; New York, NY, 2019).
Badon, A. et al. Smart optical coherence tomography for ultra-deep imaging through highly scattering media. Sci. Adv. 2, e1600370 (2016).
pubmed: 27847864
pmcid: 5099988
doi: 10.1126/sciadv.1600370
Kang, S. et al. Imaging deep within a scattering medium using collective accumulation of single-scattered waves. Nat. Photonics 9, 253 (2015).
doi: 10.1038/nphoton.2015.24
Lambert, W., Cobus, L. A., Couade, M., Fink, M. & Aubry, A. Reflection matrix approach for quantitative imaging of scattering media. Phys. Rev. X 10, 021048 (2020).
Albada, M. P. V. & Lagendijk, A. Observation of weak localization of light in a random medium. Phys. Rev. Lett. 55, 2692 (1985).
doi: 10.1103/PhysRevLett.55.2692
Wolf, P.-E. & Maret, G. Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55, 2696 (1985).
pubmed: 10032214
doi: 10.1103/PhysRevLett.55.2696
Goicoechea, A. et al. Reflection measurement of the scattering mean free path at the onset of multiple scattering, https://doi.org/10.48550/arXiv.2401.02246 (2024).
Roddier, F., ed. https://doi.org/10.1017/CBO9780511525179 Adaptive Optics in Astronomy (Cambridge University Press, Cambridge, 1999).
Judkewitz, B., Horstmeyer, R., Vellekoop, I. M., Papadopoulos, I. N. & Yang, C. Translation correlations in anisotropically scattering media. Nat. Phys. 11, 684 (2015).
doi: 10.1038/nphys3373
Osnabrugge, G., Horstmeyer, R., Papadopoulos, I. N., Judkewitz, B. & Vellekoop, I. M. Generalized optical memory effect. Optica 4, 886 (2017).
doi: 10.1364/OPTICA.4.000886
Lambert, W., Cobus, L. A., Robin, J., Fink, M. & Aubry, A. Ultrasound matrix imaging – part II: The distortion matrix for aberration correction over multiple isoplanatic patches. IEEE Trans. Med. Imag. 41, 3921 (2022).
doi: 10.1109/TMI.2022.3199483
Mallart, R. & Fink, M. Adaptive focusing in scattering media through sound?speed inhomogeneities: The van Cittert Zernike approach and focusing criterion. J. Acoust. Soc. Am. 96, 3721 (1994).
doi: 10.1121/1.410562
Wu, T. et al. Single-shot digital optical fluorescence phase conjugation through forward multiple-scattering samples. Sci. Adv. 10, adi1120 (2023).
doi: 10.1126/sciadv.adi1120
Grieve, K. et al. Stromal striae: a new insight into corneal physiology and mechanics. Sci. Rep. 7, 13584 (2017).
pubmed: 29051516
pmcid: 5648881
doi: 10.1038/s41598-017-13194-6
Zhu, L. et al. Chromato-axial memory effect through a forward-scattering slab. Optica 7, 338 (2020).
doi: 10.1364/OPTICA.382209
Bureau, F. et al. Three-dimensional ultrasound matrix imaging. Nat. Commun. 14, 6793 (2023).
pubmed: 37880210
pmcid: 10600255
doi: 10.1038/s41467-023-42338-8
Kang, S. et al. Tracing multiple scattering trajectories for deep optical imaging in scattering media. Nat. Commun. 14, 6871 (2023).
pubmed: 37898596
pmcid: 10613237
doi: 10.1038/s41467-023-42525-7
Jang, M. et al. Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin. Biomed. Opt. Express 6, 72 (2014).
pubmed: 25657876
pmcid: 4317115
doi: 10.1364/BOE.6.000072
Scholler, J. et al. Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids. Light Sci. Appl. 9, 140 (2020).
pubmed: 32864115
pmcid: 7429964
doi: 10.1038/s41377-020-00375-8
Osmanski, B.-F., Montaldo, G., Tanter, M. & Fink, M. Aberration correction by time reversal of moving speckle noise. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1575 (2012).
pubmed: 22828852
doi: 10.1109/TUFFC.2012.2357
Campillo, M. & Paul, A. Long-range correlations in the diffuse seismic coda. Science 299, 547 (2003).
pubmed: 12543969
doi: 10.1126/science.1078551
Labeyrie, A. Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images. Astron. Astrophys. 6, 85 (1970).
Rotter, S. & Gigan, S. Light fields in complex media: Mesoscopic scattering meets wave control. Rev. Mod. Phys. 89, 015005 (2017).
doi: 10.1103/RevModPhys.89.015005
Foschini, G. & Gans, M. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications 6, 311 (1998).
doi: 10.1023/A:1008889222784
Najar, U. et al. Optical distortion matrices deep inside a human cornea [data]. Zenodo. https://doi.org/10.5281/zenodo.7665117 (2023).