Harnessing forward multiple scattering for optical imaging deep inside an opaque medium.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
27 Aug 2024
Historique:
received: 05 06 2024
accepted: 14 08 2024
medline: 27 8 2024
pubmed: 27 8 2024
entrez: 26 8 2024
Statut: epublish

Résumé

As light travels through a disordered medium such as biological tissues, it undergoes multiple scattering events. This phenomenon is detrimental to in-depth optical microscopy, as it causes a drastic degradation of contrast, resolution and brightness of the resulting image beyond a few scattering mean free paths. However, the information about the inner reflectivity of the sample is not lost; only scrambled. To recover this information, a matrix approach of optical imaging can be fruitful. Here, we report on a de-scanned measurement of a high-dimension reflection matrix R via low coherence interferometry. Then, we show how a set of independent focusing laws can be extracted for each medium voxel through an iterative multi-scale analysis of wave distortions contained in R. It enables an optimal and local compensation of forward multiple scattering paths and provides a three-dimensional confocal image of the sample as the latter one had become digitally transparent. The proof-of-concept experiment is performed on a human opaque cornea and an extension of the penetration depth by a factor five is demonstrated compared to the state-of-the-art.

Identifiants

pubmed: 39187504
doi: 10.1038/s41467-024-51619-9
pii: 10.1038/s41467-024-51619-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7349

Subventions

Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 610110
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 819261
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-10-LABX-24

Informations de copyright

© 2024. The Author(s).

Références

Gérardin, B., Laurent, J., Derode, A., Prada, C. & Aubry, A. Full transmission and reflection of waves propagating through a maze of disorder. Phys. Rev. Lett. 113, 173901 (2014).
pubmed: 25379917 doi: 10.1103/PhysRevLett.113.173901
Horodynski, M., Kühmayer, M., Ferise, C., Rotter, S. & Davy, M. Anti-reflection structure for perfect transmission through complex media. Nature 607, 281 (2022).
pubmed: 35831599 doi: 10.1038/s41586-022-04843-6
Billy, J. et al. Direct observation of anderson localization of matter waves in a controlled disorder. Nature 453, 891 (2008).
pubmed: 18548065 doi: 10.1038/nature07000
Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E. & van Tiggelen, B. A. Localization of ultrasound in a three-dimensional elastic network. Nat. Phys. 4, 945 (2008).
doi: 10.1038/nphys1101
Ntziachristos, V. Going deeper than microscopy: The optical imaging frontier in biology. Nat. Methods 7, 603 (2010).
pubmed: 20676081 doi: 10.1038/nmeth.1483
Bertolotti, J. & Katz, O. Imaging in complex media. Nat. Phys. 18, 1008 (2022).
doi: 10.1038/s41567-022-01723-8
Dunsby, C. & French, P. Techniques for depth-resolved imaging through turbid media including coherence-gated imaging. J. Phys. D: Appl. Phys. 36, R207 (2003).
doi: 10.1088/0022-3727/36/14/201
Badon, A., Boccara, A. C., Lerosey, G., Fink, M. & Aubry, A. Multiple scattering limit in optical microscopy. Opt. Express 25, 28914 (2017).
doi: 10.1364/OE.25.028914
Huang, D. et al. Optical coherence tomography. Science 254, 1178 (1991).
pubmed: 1957169 pmcid: 4638169 doi: 10.1126/science.1957169
Babcock, H. W. The possibility of compensating astronomical seeing. Publ. Astronomical Soc. Pacific 65, 229 (1953).
doi: 10.1086/126606
Booth, M. J. Adaptive optical microscopy: The ongoing quest for a perfect image. Light Sci Appl 3, e165 (2014).
doi: 10.1038/lsa.2014.46
Tanter, M., Aubry, J.-F., Gerber, J., Thomas, J.-L. & Fink, M. Optimal focusing by spatio-temporal inverse filter. I. Basic principles. J. Acoust. Soc. Am. 110, 37 (2001).
pubmed: 11508962 doi: 10.1121/1.1377051
Derode, A. et al. Taking advantage of multiple scattering to communicate with time-reversal antennas. Phys. Rev. Lett. 90, 014301 (2003).
pubmed: 12570617 doi: 10.1103/PhysRevLett.90.014301
Popoff, S. M. et al. Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).
pubmed: 20366410 doi: 10.1103/PhysRevLett.104.100601
Hsu, C. W., Liew, S. F., Goetschy, A., Cao, H. & Stone, A. D. Correlation-enhanced control of wave focusing in disordered media. Nat. Phys. 13, 497 (2017).
doi: 10.1038/nphys4036
Bouchet, D., Rotter, S. & Mosk, A. P. Maximum information states for coherent scattering measurements. Nat. Phys. 17, 564 (2021).
doi: 10.1038/s41567-020-01137-4
Bender, N. et al. Depth-targeted energy delivery deep inside scattering media. Nat. Phys. 18, 309 (2022).
doi: 10.1038/s41567-021-01475-x
Yoon, S. et al. Deep optical imaging within complex scattering media. Nat. Rev. Phys. 2, 141 (2020).
doi: 10.1038/s42254-019-0143-2
Badon, A. et al. Distortion matrix concept for deep optical imaging in scattering media. Sci. Adv. 6, eaay7170 (2020).
pubmed: 32923603 pmcid: 7455485 doi: 10.1126/sciadv.aay7170
Yoon, S., Lee, H., Hong, J. H., Lim, Y.-S. & Choi, W. Laser scanning reflection-matrix microscopy for aberration-free imaging through intact mouse skull. Nat. Commun. 11, 5721 (2020).
pubmed: 33184297 pmcid: 7665219 doi: 10.1038/s41467-020-19550-x
Lambert, W., Cobus, L. A., Frappart, T., Fink, M. & Aubry, A. Distortion matrix approach for ultrasound imaging of random scattering media. Proc. Natl. Acad. Sci. U.S.A. 117, 14645 (2020).
pubmed: 32522873 pmcid: 7334504 doi: 10.1073/pnas.1921533117
Gigan, S. et al. Roadmap on wavefront shaping and deep imaging in complex media. J. Phys. Photon. 4, 042501 (2022).
doi: 10.1088/2515-7647/ac76f9
Kang, S. et al. High-resolution adaptive optical imaging within thick scattering media using closed-loop accumulation of single scattering. Nat. Commun. 8, 2157 (2017).
pubmed: 29255208 pmcid: 5735168 doi: 10.1038/s41467-017-02117-8
Kwon, Y. et al. Computational conjugate adaptive optics microscopy for longitudinal through-skull imaging of cortical myelin. Nat. Commun. 14, 105 (2023).
pubmed: 36609405 pmcid: 9823103 doi: 10.1038/s41467-022-35738-9
Badon, A., Lerosey, G., Boccara, A. C., Fink, M. & Aubry, A. Retrieving time-dependent Green’s functions in optics with low-coherence interferometry. Phys. Rev. Lett. 114, 023901 (2015).
pubmed: 25635547 doi: 10.1103/PhysRevLett.114.023901
Badon, A. et al. Spatio-temporal imaging of light transport in highly scattering media under white light illumination. Optica 3, 1160 (2016).
doi: 10.1364/OPTICA.3.001160
Beaurepaire, E., Boccara, A. C., Lebec, M., Blanchot, L. & Saint-Jalmes, H. Full-field optical coherence microscopy. Opt. Lett. 23, 244 (1998).
pubmed: 18084473 doi: 10.1364/OL.23.000244
Dubois, A., Vabre, L., Boccara, A.-C. & Beaurepaire, E. High-resolution full-field optical coherence tomography with a Linnik microscope. Appl. Opt. 41, 805 (2002).
pubmed: 11993929 doi: 10.1364/AO.41.000805
Barolle, V. et al. Manifestation of aberrations in full-field optical coherence tomography. Opt. Express 29, 22044 (2021).
pubmed: 34265978 doi: 10.1364/OE.419963
Mertz, J., Introduction to Optical Microscopy, second edition ed. (Cambridge University Press, Cambridge, United Kingdom ; New York, NY, 2019).
Badon, A. et al. Smart optical coherence tomography for ultra-deep imaging through highly scattering media. Sci. Adv. 2, e1600370 (2016).
pubmed: 27847864 pmcid: 5099988 doi: 10.1126/sciadv.1600370
Kang, S. et al. Imaging deep within a scattering medium using collective accumulation of single-scattered waves. Nat. Photonics 9, 253 (2015).
doi: 10.1038/nphoton.2015.24
Lambert, W., Cobus, L. A., Couade, M., Fink, M. & Aubry, A. Reflection matrix approach for quantitative imaging of scattering media. Phys. Rev. X 10, 021048 (2020).
Albada, M. P. V. & Lagendijk, A. Observation of weak localization of light in a random medium. Phys. Rev. Lett. 55, 2692 (1985).
doi: 10.1103/PhysRevLett.55.2692
Wolf, P.-E. & Maret, G. Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55, 2696 (1985).
pubmed: 10032214 doi: 10.1103/PhysRevLett.55.2696
Goicoechea, A. et al. Reflection measurement of the scattering mean free path at the onset of multiple scattering, https://doi.org/10.48550/arXiv.2401.02246 (2024).
Roddier, F., ed. https://doi.org/10.1017/CBO9780511525179 Adaptive Optics in Astronomy (Cambridge University Press, Cambridge, 1999).
Judkewitz, B., Horstmeyer, R., Vellekoop, I. M., Papadopoulos, I. N. & Yang, C. Translation correlations in anisotropically scattering media. Nat. Phys. 11, 684 (2015).
doi: 10.1038/nphys3373
Osnabrugge, G., Horstmeyer, R., Papadopoulos, I. N., Judkewitz, B. & Vellekoop, I. M. Generalized optical memory effect. Optica 4, 886 (2017).
doi: 10.1364/OPTICA.4.000886
Lambert, W., Cobus, L. A., Robin, J., Fink, M. & Aubry, A. Ultrasound matrix imaging – part II: The distortion matrix for aberration correction over multiple isoplanatic patches. IEEE Trans. Med. Imag. 41, 3921 (2022).
doi: 10.1109/TMI.2022.3199483
Mallart, R. & Fink, M. Adaptive focusing in scattering media through sound?speed inhomogeneities: The van Cittert Zernike approach and focusing criterion. J. Acoust. Soc. Am. 96, 3721 (1994).
doi: 10.1121/1.410562
Wu, T. et al. Single-shot digital optical fluorescence phase conjugation through forward multiple-scattering samples. Sci. Adv. 10, adi1120 (2023).
doi: 10.1126/sciadv.adi1120
Grieve, K. et al. Stromal striae: a new insight into corneal physiology and mechanics. Sci. Rep. 7, 13584 (2017).
pubmed: 29051516 pmcid: 5648881 doi: 10.1038/s41598-017-13194-6
Zhu, L. et al. Chromato-axial memory effect through a forward-scattering slab. Optica 7, 338 (2020).
doi: 10.1364/OPTICA.382209
Bureau, F. et al. Three-dimensional ultrasound matrix imaging. Nat. Commun. 14, 6793 (2023).
pubmed: 37880210 pmcid: 10600255 doi: 10.1038/s41467-023-42338-8
Kang, S. et al. Tracing multiple scattering trajectories for deep optical imaging in scattering media. Nat. Commun. 14, 6871 (2023).
pubmed: 37898596 pmcid: 10613237 doi: 10.1038/s41467-023-42525-7
Jang, M. et al. Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin. Biomed. Opt. Express 6, 72 (2014).
pubmed: 25657876 pmcid: 4317115 doi: 10.1364/BOE.6.000072
Scholler, J. et al. Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids. Light Sci. Appl. 9, 140 (2020).
pubmed: 32864115 pmcid: 7429964 doi: 10.1038/s41377-020-00375-8
Osmanski, B.-F., Montaldo, G., Tanter, M. & Fink, M. Aberration correction by time reversal of moving speckle noise. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1575 (2012).
pubmed: 22828852 doi: 10.1109/TUFFC.2012.2357
Campillo, M. & Paul, A. Long-range correlations in the diffuse seismic coda. Science 299, 547 (2003).
pubmed: 12543969 doi: 10.1126/science.1078551
Labeyrie, A. Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images. Astron. Astrophys. 6, 85 (1970).
Rotter, S. & Gigan, S. Light fields in complex media: Mesoscopic scattering meets wave control. Rev. Mod. Phys. 89, 015005 (2017).
doi: 10.1103/RevModPhys.89.015005
Foschini, G. & Gans, M. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications 6, 311 (1998).
doi: 10.1023/A:1008889222784
Najar, U. et al. Optical distortion matrices deep inside a human cornea [data]. Zenodo. https://doi.org/10.5281/zenodo.7665117 (2023).

Auteurs

Ulysse Najar (U)

Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France.

Victor Barolle (V)

Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France.

Paul Balondrade (P)

Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France.

Mathias Fink (M)

Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France.

Claude Boccara (C)

Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France.

Alexandre Aubry (A)

Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France. alexandre.aubry@espci.fr.

Classifications MeSH