Hypericin-loaded in modified theranostic liposome nanoplatform: a preliminary in vivo study of targeting and diagnosis.
Coated liposomes
DPPC lipid
F127 Pluronic®
Folate
Spermine
Journal
Naunyn-Schmiedeberg's archives of pharmacology
ISSN: 1432-1912
Titre abrégé: Naunyn Schmiedebergs Arch Pharmacol
Pays: Germany
ID NLM: 0326264
Informations de publication
Date de publication:
24 Aug 2024
24 Aug 2024
Historique:
received:
15
03
2024
accepted:
13
08
2024
medline:
24
8
2024
pubmed:
24
8
2024
entrez:
24
8
2024
Statut:
aheadofprint
Résumé
Modified theranostic liposomes were created by combining phospholipid 1,2-dipalmitoyl-sn-3-glycerol-phosphatidylcholine with two previously modified Pluronic
Identifiants
pubmed: 39180673
doi: 10.1007/s00210-024-03379-y
pii: 10.1007/s00210-024-03379-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Council for Scientific, Technological Development
ID : CNPq-162876/2020-3 process
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Ali I, Alsehli M, Scotti L, Tullius Scotti M, Tsai S-T, Yu R-S, Hsieh MF, Chen J-C (2020) Progress in polymeric nano-medicines for theranostic cancer treatment. Polymers 12(3):598. https://doi.org/10.3390/polym12030598
doi: 10.3390/polym12030598
pubmed: 32155695
pmcid: 7182942
Apolinario AC, Hirata AS, Anjos Miguel RD, Costa-Lotufo LV, Pessoa A, La Clair JJ, Fenical W, Lopes LB (2020) Exploring the benefits of nanotechnology for cancer drugs in different stages of the drug development pipeline. Nanomedicine 15(26):2539–2542. https://doi.org/10.2217/nnm-2020-0290
doi: 10.2217/nnm-2020-0290
pubmed: 32945726
Bahrami B, Mohammadnia-Afrouzi M, Bakhshaei P et al (2015) Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy. Tumor Biol. 36:5727–5742. https://doi.org/10.1007/s13277-015-3706-6
doi: 10.1007/s13277-015-3706-6
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin. https://doi.org/10.3322/caac.21492
doi: 10.3322/caac.21492
Casero R, Marton L (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6:373–390. https://doi.org/10.1038/nrd2243
doi: 10.1038/nrd2243
pubmed: 17464296
Choudhary N, Collignon TE, Tewari D, Bishayee A (2022) Hypericin and its anticancer effects: from mechanism of action to potential therapeutic application. Phytomedicine 105:154356. https://doi.org/10.1016/j.phymed.2022.154356
doi: 10.1016/j.phymed.2022.154356
pubmed: 35985181
De Lima SR, Pereira GJ, Messias DN, Andrade AA, Oliveira E, Lodeiro C, Zilio SC, Pilla V (2018) Fluorescence quantum yield determination of molecules in liquids by thermally driven conical diffraction. J Lumins 197:175–179. https://doi.org/10.1016/j.jlumin.2018.01.027
doi: 10.1016/j.jlumin.2018.01.027
de Morais FAP, Gonçalves RS, da Silva Souza Campanholi K, Martins de França B, Augusto Capeloto O, Lazarin-Bidóia D, Balbinot RB, Nakamura CV, Carlos Malacarne L, Caetano W, Hioka N, (2021) Photophysical characterization of hypericin-loaded in micellar, liposomal and copolymer-lipid nanostructures based F127 and DPPC liposomes, Spectrochim. Acta A Mol Biomol Spectrosc 248:119173. https://doi.org/10.1016/j.saa.2020.119173
de Morais FAP, De Oliveira ACV, Balbinot RB, Lazarin-Bidóia D, Ueda-Nakamura T, de Oliveira Silva S, da Silva Souza Campanholi K, da Silva Junior RC, Gonçalves RS, Caetano W et al. (2023) Multifunctional nanoparticles as high-efficient targeted hypericin system for theranostic melanoma. Polymers, 15:179. https://doi.org/10.3390/polym15010179
De Oliveira ACV, de Morais FAP, de Silva Souza Campanholi K, Lazarin-Bidóia D, Balbinot RB, Nakamura CV, Caetano W, Hioka N, Monteiro OS, Rocha CQ, Gonçalves RS (2022) Melanoma-targeted photodynamic therapy based on hypericin-loaded multifunctional P123-spermine/folate micelles. Photodiagnos Photodynam Ther, 40, 103103. https://doi.org/10.1016/j.pdpdt.2022.103103
Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T (2023) Nanomedicine in cancer therapy. Signal Transduct Target Ther 8:29. https://doi.org/10.1038/s41392-023-01536-y
doi: 10.1038/s41392-023-01536-y
Glassman PM, Muzykantov VR (2019) J Pharmacol Exp Ther 370(3):570–580. https://doi.org/10.1124/jpet.119.257113
doi: 10.1124/jpet.119.257113
pubmed: 30837281
pmcid: 6806371
Gonçalves RS, César GB, Barbosa PM, Hioka N, Nakamura CV, Bruschi ML, Caetano W (2019) Optimized protocol for multigram preparation of emodin anthrone, a precursor in the hypericin synthesis. Nat Prod Res 33:1196–1199. https://doi.org/10.1080/14786419.2018.1457661
doi: 10.1080/14786419.2018.1457661
pubmed: 29600721
Ikeda-Imafuku M, Wang LL-W, Rodrigues D, Shaha S, Zhao Z, Mitragotri S (2022) Strategies to improve the EPR effect: a mechanistic perspective and clinical translation. J Contr Rel 345:512–536. https://doi.org/10.1016/j.jconrel.2022.03.043
doi: 10.1016/j.jconrel.2022.03.043
Ilbawi AM, Velazquez-Berumen A (2018) World Health Organization list of priority medical devices for cancer management to promote universal coverage. Clin Labor Med 38(1):151–160. https://doi.org/10.1016/j.cll.2017.10.012
doi: 10.1016/j.cll.2017.10.012
Jiang B, Wang J, Ni Y, Chen F (2013) Necrosis avidity: a newly discovered feature of hypericin and its preclinical applications in necrosis imaging. Theranostics 3:667–676. https://doi.org/10.7150/thno.6650
doi: 10.7150/thno.6650
pubmed: 24052807
pmcid: 3776218
Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK (2019) Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C 98:1252–1276. https://doi.org/10.1016/j.msec.2019.01.066
doi: 10.1016/j.msec.2019.01.066
Khattak M, Fisher R, Turajlic S, Larkin J (2013) Targeted therapy and immunotherapy in advanced melanoma: an evolving paradigm. Ther Adv Med Oncol 5(2):105–118. https://doi.org/10.1177/1758834012466280
doi: 10.1177/1758834012466280
pubmed: 23450149
pmcid: 3556874
Olszanski AJ (2014) Current and future roles of targeted therapy and immunotherapy in advanced melanoma. J Manag Care Pharm 20(4):346–356. https://doi.org/10.18553/jmcp.2014.20.4.346
doi: 10.18553/jmcp.2014.20.4.346
Peters MC, Minton A, Phanstiel IV O, Gilmour SK (2018) A novel polyamine-targeted therapy for BRAF mutant melanoma tumors. Medical Sciences. 6(1)3. https://doi.org/10.3390/medsci6010003
Scaranti M, Cojocaru E, Banerjee S, Banerji U (2020) Exploiting the folate receptor α in oncology. Nat Rev Clin Oncol 17(6):349–359. https://doi.org/10.1038/s41571-020-0339-5
doi: 10.1038/s41571-020-0339-5
pubmed: 32152484
Schneider AFL, Kithil M, Cardoso MC, Lehmann M, Hackenberger CPR (2021) Cellular uptake of large biomolecules enabled by cell-surface-reactive cell-penetrating peptide additives. Nat Chem 13:530–539. https://doi.org/10.1038/s41557-021-00661-x
doi: 10.1038/s41557-021-00661-x
pubmed: 33859390
Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103:1685–1758. https://doi.org/10.1021/cr010371d
doi: 10.1021/cr010371d
pubmed: 12744692
Sezgin-Bayindir Z, Losada-Barreiro S, Bravo-Díaz C, Sova M, Kristl J, Saso L (2021) Nanotechnology-based drug delivery to improve the therapeutic benefits of NRF2 modulators in cancer therapy. Antioxidants 10(5):685. https://doi.org/10.3390/antiox10050685
doi: 10.3390/antiox10050685
pubmed: 33925605
pmcid: 8145905
Sun J, Carr MJ, Khushalani NI (2019) Principles of targeted therapy for melanoma. Surg Clin North Am 100(1):175–188. https://doi.org/10.1016/j.suc.2019.09.013
doi: 10.1016/j.suc.2019.09.013
pubmed: 31753111
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249
doi: 10.3322/caac.21660
pubmed: 33538338
Tran T, Shatnawi A, Zheng X, Kelley KMM, Ratnam M (2005) Enhancement of folate receptor α expression in tumor cells through the glucocorticoid receptor: a promising means to improved tumor detection and targeting. Cancer Res 65(10):4431–4441. https://doi.org/10.1158/0008-5472.CAN-04-2890
doi: 10.1158/0008-5472.CAN-04-2890
pubmed: 15899836
Wang J, Li Y, Nie G (2021) Multifunctional biomolecule nanostructures for cancer therapy. Nat Rev Mater 6:766–783. https://doi.org/10.1038/s41578-021-00315-x
doi: 10.1038/s41578-021-00315-x
pubmed: 34026278
pmcid: 8132739
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A (2020) Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 7:191
doi: 10.3389/fmolb.2020.00193