Draft genome sequence and annotation of the polyextremotolerant polyol lipid-producing fungus aureobasidium pullulans NRRL 62042.


Journal

BMC genomic data
ISSN: 2730-6844
Titre abrégé: BMC Genom Data
Pays: England
ID NLM: 101775394

Informations de publication

Date de publication:
20 Aug 2024
Historique:
received: 28 05 2024
accepted: 26 07 2024
medline: 21 8 2024
pubmed: 21 8 2024
entrez: 20 8 2024
Statut: epublish

Résumé

The ascomycotic yeast-like fungus Aureobasidium exhibits the natural ability to synthesize several secondary metabolites, like polymalic acid, pullulan, or polyol lipids, with potential biotechnological applications. Combined with its polyextremotolerance, these properties make Aureobasidium a promising production host candidate. Hence, plenty of genomes of Aureobasidia have been sequenced recently. Here, we provide the annotated draft genome sequence of the polyol lipid-producing strain A. pullulans NRRL 62042. The genome of A. pullulans NRRL 62042 was sequenced using Illumina NovaSeq 6000. Genome assembly revealed a genome size of 24.2 Mb divided into 39 scaffolds with a GC content of 50.1%. Genome annotation using Genemark v4.68 and GenDBE yielded 9,596 genes.

Identifiants

pubmed: 39164622
doi: 10.1186/s12863-024-01258-2
pii: 10.1186/s12863-024-01258-2
doi:

Substances chimiques

Polymers 0
polyol 0
Lipids 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

75

Informations de copyright

© 2024. The Author(s).

Références

Gostinčar C, Turk M, Zajc J, Gunde-Cimerman N. Fifty Aureobasidium pullulans genomes reveal a recombining polyextremotolerant generalist. Environ Microbiol. 2019;21(10):3638–52.
doi: 10.1111/1462-2920.14693 pubmed: 31112354 pmcid: 6852026
de Hoog GS, Yurlova NA. Conidiogenesis, nutritional physiology and taxonomy of Aureobasidium and Hormonema. Antonie Van Leeuwenhoek. 1994;65(1):41–54.
doi: 10.1007/BF00878278 pubmed: 8060123
Zalar P, Gostinčar C, de Hoog GS, Uršič V, Sudhadham M, Gunde-Cimerman N. Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol. 2008;61:21–38.
doi: 10.3114/sim.2008.61.02 pubmed: 19287524 pmcid: 2610310
Urzì C, De Leo F, Lo Passo C, Criseo G. Intra-specific diversity of Aureobasidium pullulans strains isolated from rocks and other habitats assessed by physiological methods and by random amplified polymorphic DNA (RAPD). J Microbiol Methods. 1999;36(1–2):95–105.
doi: 10.1016/S0167-7012(99)00014-7 pubmed: 10353803
Gunde-Cimerman N, Zalar P, De Hoog S, Plemenitas A. Hypersaline waters in salterns - natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol. 2000;32:235–40.
Mazina SE, Gasanova TV, Kozlova EV, Popkova AV, Fedorov AS, Bukharina IL et al. Biodiversity of phototrophs and culturable fungi in gobustan caves. Life. 2023;13(1).
Gostinčar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J et al. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics. 2014;15(549).
Chi Z, Wang F, Chi Z, Yue L, Liu G, Zhang T. Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl Microbiol Biotechnol. 2009;82(5):793–804.
doi: 10.1007/s00253-009-1882-2 pubmed: 19198830
Prasongsuk S, Lotrakul P, Ali I, Bankeeree W, Punnapayak H. The current status of Aureobasidium pullulans in biotechnology. Folia Microbiol (Praha). 2018;63(2):129–40.
doi: 10.1007/s12223-017-0561-4 pubmed: 29079936
Tiso T, Welsing G, Blank LM. Proposal for a systematic naming convention for liamocins. J Surfactants Deterg. 2024;(January):2–4.
Gostinčar C, Stajich JE, Zupan J, Zalar P. Genomic evidence for intraspecific hybridization in a clonal and extremely halotolerant yeast. BMC Genomics. 2018;19(364):1–12.
Gostinĉar C, Muggia L, Grube M. Polyextremotolerant black fungi: Oligotrophism, adaptive potential, and a link to lichen symbioses. Front Microbiol. 2012;3(NOV):1–6.
Xiao D, Blank LM, Tiso T. Draft whole-genome sequence of the black yeast Aureobasidium Pullulans NRRL 62031. Microbiol Resour Announc. 2023;12(5).
Rueda-Mejia MP, Nägeli L, Lutz S, Hayes RD, Varadarajan AR, Grigoriev IV, et al. Genome, transcriptome and secretome analyses of the antagonistic, yeast-like fungus aureobasidium pullulans to identify potential biocontrol genes. Microb Cell. 2021;8(8):184–202.
doi: 10.15698/mic2021.08.757 pubmed: 34395586 pmcid: 8329847
Vignolle GA, Mach RL, Mach-Aigner AR, Derntl C. Genome sequence of the black yeast-like strain aureobasidium pullulans var. Aubasidani CBS 100524. Microbiol Resour Announc. 2021;10(12):21–2.
doi: 10.1128/MRA.01293-20
Zhao SF, Jiang H, Chi Z, Liu GL, Chi ZM, Chen TJ et al. Genome sequencing of Aureobasidium pullulans P25 and overexpression of a glucose oxidase gene for hyper-production of Ca 2+ -gluconic acid. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol [Internet]. 2019;112(5):669–78. https://doi.org/10.1007/s10482-018-1197-3
Jiang H, Chi Z, Liu GL, Hu Z, Zhao SZ, Chi ZM. Melanin biosynthesis in the desert-derived Aureobasidium melanogenum XJ5-1 is controlled mainly by the CWI signal pathway via a transcriptional activator Cmr1. Curr Genet [Internet]. 2020;66(1):173–85. https://doi.org/10.1007/s00294-019-01010-9
Wei X, Liu GL, Jia SL, Chi Z, Hu Z, Chi ZM. Pullulan biosynthesis and its regulation in Aureobasidium spp. Carbohydr Polym [Internet]. 2021;251(August 2020):117076. https://doi.org/10.1016/j.carbpol.2020.117076
Leathers TD. Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol. 2003;62(5–6):468–73.
doi: 10.1007/s00253-003-1386-4 pubmed: 12830329
Manitchotpisit P, Skory CD, Peterson SW, Price NPJ, Vermillion KE, Leathers TD. Poly(β-L-malic acid) production by diverse phylogenetic clades of Aureobasidium pullulans. J Ind Microbiol Biotechnol. 2012;39(1):125–32.
doi: 10.1007/s10295-011-1007-7 pubmed: 21720775
Bischoff KM, Leathers TD, Price NP, Manitchotpisit P. Liamocin oil from Aureobasidium pullulans has antibacterial activity with specificity for species of Streptococcus. J Antibiot (Tokyo) [Internet]. 2015;68(10):642–5. https://doi.org/10.1038/ja.2015.39
Rich JO, Manitchotpisit P, Peterson SW, Liu S, Leathers TD, Anderson AM. Phylogenetic classification of Aureobasidium pullulans strains for production of feruloyl esterase. Biotechnol Lett. 2016;38(5):863–70.
doi: 10.1007/s10529-016-2054-y pubmed: 26875091
Kim JS, Lee IK, Yun BS. A novel biosurfactant produced by Aureobasidium pullulans L3-GPY from a tiger lily wild flower, Lilium lancifolium thunb. PLoS ONE. 2015;10(4):1–12.
Manitchotpisit P, Price NPJ, Leathers TD, Punnapayak H. Heavy oils produced by Aureobasidium pullulans. Biotechnol Lett. 2011;33(6):1151–7.
doi: 10.1007/s10529-011-0548-1 pubmed: 21293903
Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:884–90.
doi: 10.1093/bioinformatics/bty560
Bushnell B, Rood J, Singer E. BBMerge – accurate paired shotgun read merging via overlap. PLoS ONE. 2017;12(10):1–15.
doi: 10.1371/journal.pone.0185056
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.
doi: 10.1089/cmb.2012.0021 pubmed: 22506599 pmcid: 3342519
Gurevich A, Saveliev V, Vyahhi N, Tesler G. Genome analysis QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072–5.
doi: 10.1093/bioinformatics/btt086 pubmed: 23422339 pmcid: 3624806
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO Update: Novel and Streamlined Workflows along with broader and deeper phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and viral genomes. Mol Biol Evol. 2021;38(10):4647–54.
doi: 10.1093/molbev/msab199 pubmed: 34320186 pmcid: 8476166
Manni M, Berkeley MR, Seppey M, Zdobnov EM. BUSCO: assessing genomic data Quality and Beyond. Curr Protoc. 2021;1(12):1–41.
doi: 10.1002/cpz1.323
Wibberg D, Stadler M, Lambert C, Bunk B, Spröer C, Rückert C et al. High quality genome sequences of thirteen Hypoxylaceae (Ascomycota) strengthen the phylogenetic family backbone and enable the discovery of new taxa. Fungal Divers [Internet]. 2021;106(1):7–28. https://doi.org/10.1007/s13225-020-00447-5
Schafhauser T, Wibberg D, Binder A, Rückert C, Busche T, Wohlleben W et al. Genome assembly and genetic traits of the pleuromutilin-producer clitopilus passeckerianus DSM1602. J Fungi. 2022;8(8).
Ullmann L, Wibberg D, Busche T, Rückert C, Müsgens A, Kalinowski J et al. Seventeen Ustilaginaceae high-quality genome sequences allow phylogenomic analysis and provide insights into secondary metabolite synthesis. J Fungi. 2022;8(3).
Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res. 2008;18(12):1979–90.
doi: 10.1101/gr.081612.108 pubmed: 18757608 pmcid: 2593577
Rupp O, Becker J, Brinkrolf K, Timmermann C, Borth N, Pühler A et al. Construction of a public CHO cell line transcript database using versatile bioinformatics analysis pipelines. PLoS ONE. 2014;9(1).
Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. The COG database: an updated vesion includes eukaryotes. BMC Bioinformatics. 2003;4:1–14.
doi: 10.1186/1471-2105-4-41
Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32(DATABASE ISS.).
Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 2003;31(1):365–70.
doi: 10.1093/nar/gkg095 pubmed: 12520024 pmcid: 165542
Lowe TM, Eddy SR. TRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1996;25(5):955–64.
doi: 10.1093/nar/25.5.955
Dielentheis-Frenken MRE, Blank LM, Tiso T. Bioproject. [Internet]. NCBI. 2023. http://identifiers.org/ncbiprotein:PRJNA972899
Dielentheis-Frenken MRE, Blank LM, Tiso T. Biosample. [Internet]. NCBI. 2023. http://identifiers.org/ncbiprotein:SAMN35102111
Dielentheis-Frenken MRE, Blank LM, Tiso T. Data set 1. SRA data. [Internet]. NCBI SRA. 2024. http://identifiers.org/ncbiprotein:SRR27493674
Dielentheis-Frenken MRE, Wibberg D, Blank LM, Tiso T. Data set 2. Genome. [Internet]. NCBI. 2023. http://identifiers.org/ncbiprotein:JASGXD010000000

Auteurs

Marie R E Dielentheis-Frenken (MRE)

Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany.

Daniel Wibberg (D)

Center for Biotechnology, Universität Bielefeld, Bielefeld, Germany.
Computational Metagenomics, Institute of Bio- and Geosciences IBG-5, Forschungszentrum Jülich GmbH, Jülich, Germany.

Lars M Blank (LM)

Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany.

Till Tiso (T)

Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany. till.tiso@rwth-aachen.de.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Animals Huntington Disease Mitochondria Neurons Mice
Ascomycota Cenchrus Chromosomes, Fungal Genome, Fungal Plant Diseases

Classifications MeSH