The contribution of the Middle Triassic fossil assemblage of Monte San Giorgio to insect evolution.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
20 Aug 2024
20 Aug 2024
Historique:
received:
12
03
2024
accepted:
02
08
2024
medline:
21
8
2024
pubmed:
21
8
2024
entrez:
20
8
2024
Statut:
epublish
Résumé
The Triassic represents a critical period for understanding the turnover of insect fauna from the Paleozoic to the Mesozoic following the end-Permian mass extinctions (EPME); however, fossil deposits from the Early-Middle Triassic are scarce. The exceptionally preserved 239 million-year-old fossil insect fauna recorded at Monte San Giorgio (Switzerland), including 248 fossils representing 15 major insect clades is presented here. Besides the exceptional features, including their small size and excellent preservation, the fossils have importance in the evolutionary history of the group. The taxonomic and ecological diversity recovered, including both freshwater (dragonflies and caddisflies) and terrestrial taxa (true bugs and wasps), demonstrates that complex environments sustained a paleocommunity dominated by monurans (thought not to have survived the EPME), midges, and beetles. Interestingly, a blattodean-like fossil bearing an external ootheca was also found, important for understanding Paleozoic roachoids to extant cockroaches' transition and the evolution of maternal brood care. Moreover, the youngest and first complete specimen of †Permithonidae and the oldest sawfly fossils were discovered. Finally, round-shaped bodies, compatible with seminal capsules or lycophyte spores, were found on the abdomens of several midge-like individuals. If these are spores, non-seed-bearing plants could have been the first entomophilous plants rather than gymnosperms, as recently supposed. Altogether, these fossils contribute substantially to understanding insect evolution and Paleozoic-Mesozoic faunal turnover.
Identifiants
pubmed: 39164382
doi: 10.1038/s42003-024-06678-5
pii: 10.1038/s42003-024-06678-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1023Informations de copyright
© 2024. The Author(s).
Références
Benton, M. J. The origins of modern biodiversity on land. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3667–3679 (2010).
pubmed: 20980315
pmcid: 2982001
doi: 10.1098/rstb.2010.0269
Raup, D. M. Size of the Permo–Triassic bottleneck and its evolutionary implications. Science 206, 217–218 (1979).
pubmed: 17801788
doi: 10.1126/science.206.4415.217
Song, H. J., Wignall, P. B., Tong, J. & Yin, H. Two pulses of extinction during the Permian–Triassic crisis. Nat. Geosci. 6, 52–56 (2013).
doi: 10.1038/ngeo1649
Nowak, H., Schneebeli-Hermann, E. & Kustatscher, E. No mass extinction for land plants at the Permian-Triassic transition. Nat. Commun. 10, 384 (2019).
pubmed: 30674875
pmcid: 6344494
doi: 10.1038/s41467-018-07945-w
Montagna, M. et al. Recalibration of the insect evolutionary time scale using Monte San Giorgio fossils suggests survival of key lineages through the End-Permian Extinction. Proc. R. Soc. B 286, 20191854 (2019).
pubmed: 31594499
pmcid: 6790769
doi: 10.1098/rspb.2019.1854
Schachat, S. R. & Labandeira, C. C. Are insects heading toward their first mass extinction? Distinguishing turnover from crises in their fossil record. Ann. Entomol. Soc. Am. 114, 99–118 (2021).
doi: 10.1093/aesa/saaa042
Labandeira, C. C. & Sepkoski, J. J. Insect diversity in the fossil record. Science 261, 310–315 (1993).
pubmed: 11536548
doi: 10.1126/science.11536548
Grimaldi, D. & Engel, M. S. Evolution of the Insects (Cambridge Univ. Press, 2005).
Labandeira, C. C. Silurian to Triassic plant and insect clades and their associations: new data, a review, and interpretations. Arthropod Syst. Phylogeny 64, 53–94 (2006).
doi: 10.3897/asp.64.e31644
Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).
pubmed: 25378627
doi: 10.1126/science.1257570
Zheng, D. et al. Middle-Late Triassic insect radiation revealed by diverse fossils and isotopic ages from China. Sci. Adv. 4, eaat1380 (2018).
pubmed: 30191177
pmcid: 6124916
doi: 10.1126/sciadv.aat1380
Labandeira, C. C. The pollination of mid Mesozoic seed plants and the early history of long-proboscid insects. Ann. Missouri Bot. Gard. 97, 469–513 (2010).
doi: 10.3417/2010037
Jouault, C., Nel, A., Perrichot, V., Legendre, F. & Condamine, F. L. Multiple drivers and lineage-specific insect extinctions during the Permo-Triassic. Nat. Commun. 13, 7512 (2022).
pubmed: 36473862
pmcid: 9726944
doi: 10.1038/s41467-022-35284-4
Fowler, M. S. Extinction cascades and the distribution of species interactions. Oikos 119, 864–873 (2010).
doi: 10.1111/j.1600-0706.2009.17817.x
Jonsson, T., Karlsson, P. & Jonsson, A. Food web structure affects the extinction risk of species in ecological communities. Ecol. Modell. 199, 93–106 (2006).
doi: 10.1016/j.ecolmodel.2006.06.012
Renesto, S., Magnani, F. & Stockar, R. A new coelacanth specimen with elongate ribs from the Middle Triassic (Ladinian) Kalkschieferzone of Monte San Giorgio (Canton Ticino, Switzerland). Riv. Ital. Paleontol. Stratigr. 127, 689–700 (2021).
Stockar, R., Baumgartner, P. O. & Condon, D. Integrated Ladinian bio-chronostratigraphy and geochrononology of Monte San Giorgio (Southern Alps, Switzerland). Swiss J. Geosci. 60, 239–269 (2012).
Béthoux, O. & Wieland, F. Evidence for Carboniferous origin of the order Mantodea (Insecta: Dictyoptera) gained from forewing morphology. Zool. J. Linn. Soc. 156, 79–113 (2009).
doi: 10.1111/j.1096-3642.2008.00485.x
Montagna, M., Magoga, G. & Magnani, F. The Middle Triassic palaeontomofauna of Monte San Giorgio with the description of Merithone laetitiae (†Permithonidae) gen. et sp. nov. Swiss J. Palaeontol. 143, 17 (2024).
doi: 10.1186/s13358-024-00317-6
Krzeminski, W. & Lombardo, C. New fossil Ephemeroptera and Coleoptera from the Ladinian (Middle Triassic) of Canton Ticino (Switzerland). Riv. Ital. Paleontol. Stratigr. 107, 69–78 (2001).
Bechly, G. & Stockar, R. The first Mesozoic record of the extinct apterygote insect genus Dasyleptus (Insecta: Archaeognatha: Monura: Dasyleptidae) from the Triassic of Monte San Giorgio (Switzerland). Palaeodiversity 4, 23–37 (2011).
Strada, L., Montagna, M. & Tintori, A. A new genus and species of the family Trachypachidae (Coleoptera, Adephaga) from the upper Ladinian (Middle Triassic) of Monte San Giorgio. Riv. Ital. Paleontol. Stratigr. 120, 183–190 (2014).
Montagna, M. et al. Central nervous system and muscular bundles preserved in a 240 million year old giant bristletail (Archaeognatha, Machilidae). Sci. Rep. 7, 46016 (2017).
pubmed: 28387236
pmcid: 5384076
doi: 10.1038/srep46016
Montagna, M., Strada, L., Dioli, P. & Tintori, A. The Middle Triassic lagerstätte of Monte San Giorgio reveals the oldest lace bugs (Hemiptera: Tingidae): Archetingis ladinica gen. n. sp. n. Riv. Ital. Paleontol. Stratigr. 124, 35–44 (2018).
Tintori, A. The actinopterygian fish Prohalecites from the Triassic of N Italy. Palaeontology 33, 155–174 (1990).
Montagna, M. Comment on Phylogenetic analyses with four new Cretaceous bristletails reveal inter-relationships of Archaeognatha and Gondwana origin of Meinertellidae. Cladistics 36, 227–231 (2020).
pubmed: 34618953
doi: 10.1111/cla.12387
Rinehart, L. F., Rasnitsyn, A. P., Lucas, S. G. & Heckert, A. B. Instar sizes and growth in the Middle Permian monuran Dasyleptus brongniarti (Insecta: Machilida: Dasyleptidae). Bull. N M Mus. Nat. Hist. Sci. 30, 270–272 (2005).
Bashkuev, A. et al. Insects from the Buntsandstein of Lower Franconia and Thuringia. PalZ 86, 175–185 (2012).
doi: 10.1007/s12542-011-0119-8
Simms, M. J. & Ruffell, A. H. Synchroneity of climatic change and extinctions in the Late Triassic. Geology 17, 265–268 (1989).
doi: 10.1130/0091-7613(1989)017<0265:SOCCAE>2.3.CO;2
Dal Corso, J. et al. Extinction and dawn of the modern world in the Carnian (Late Triassic). Sci. Adv. 6, eaba0099 (2020).
Rozefelds, A. C. A fossil zygopteran nymph (Insecta: Odonata) from the Late Triassic Aberdare conglomerate: Southeast Queensland. Proc. R. Soc. Qld. 96, 25–32 (1985).
Nel, A., Nam, G. S. & Jouault, C. First representative of the odonatan superfamily Triassolestoidea (Odonatoptera: Parazygoptera) from the Upper Triassic of the Korean Peninsula. Alcheringa 46, 237–243 (2022).
doi: 10.1080/03115518.2022.2130426
Kukalová-Peck, J. Carboniferous protodonatoid dragonfly nymphs and the synapomorphies of Odonatoptera and Ephemeroptera (Insecta: Palaeoptera). Palaeodiversity 2, 169–198 (2009).
Fleck, G. et al. Phylogeny and classification of the Stenophlebioptera (Odonata: Epiproctophora). Ann. Soc. Entomol. Fr. 39, 55–59 (2003).
doi: 10.1080/00379271.2003.10697363
Kohli, M. et al. Evolutionary history and divergence times of Odonata (dragonflies and damselflies) revealed through transcriptomics. iScience 24, 103324 (2021).
pubmed: 34805787
pmcid: 8586788
doi: 10.1016/j.isci.2021.103324
McKittrick, F. A. Evolutionary study of cockroaches. Cornell Univ. Agric. Exp. Sta. Mem. 389, 1–197 (1964).
Klass, K. D. The ovipositor of Dictyoptera (Insecta): homology and ground-plan of the main elements. Zool. Anz. 236, 69–101 (1998).
Anisyutkin, L. D. et al. Fossil insects in the Cretaceous mangrove facies of southern Negev, Israel in Plant-arthropod interactions in the early Angiosperm history: evidence from the Cretaceous of Israel (eds. Krassilov, V. & Rasnitsyn, A.) 190-223 (Pensoft, 2008).
Gao, T. et al. Maternal care by Early Cretaceous. cockroaches, J. Syst. Palaeontol. 17, 379–391 (2019).
doi: 10.1080/14772019.2018.1426059
Hörnig, M. H., Haug, J. T. & Haug, C. New details of Santanmantis axelrodi and the evolution of the mantodean morphotype. Palaeodiversity 6, 157–168 (2013).
Pinto, I. D. & Purper, I. A N. blattoid Cretac. Braz. Pesqui. geociênc 18, 5–10 (1986).
Bechly, G. “Blattaria”: cockroaches and roachoids in The Crato fossil beds of Brazil: window into an ancient world (eds. Martill, D. M., Bechly, G. & Loveridge, R. F.) 239-249 (Cambridge Univ. Press, 2007).
Hörnig, M. K., Haug, C., Schneider, J. W. & Haug, J. T. Evolution of reproductive strategies in dictyopteran insects-clues from ovipositor morphology of extinct roachoids. Acta Palaeontol. Pol. 63, 1–24 (2018).
doi: 10.4202/app.00324.2016
Vršansky, P., Vishniakova, V. N. & Rasnitsyn, A. P. Blattida in History of insects (eds. Rasnitsyn, A. P. & Quicke, D. L. J..) 263-270 (Kluwer, 2002).
Du, E. et al Convergent adaptation of ootheca formation as a reproductive strategy in polyneoptera. Mol. Biol. Evol. 39, msac042 (2022).
Fraser, N. C., Grimaldi, D. A., Olsen, P. E. & Axsmith, B. A Triassic Lagerstätte from eastern North America. Nature 380, 615–619 (1996).
doi: 10.1038/380615a0
Grimaldi, D. A., Shmakov, A. & Fraser, N. Mesozoic thrips and early evolution of the order Thysanoptera (Insecta). Int. J. Paleopathol. 78, 941–952 (2004).
Shcherbakov, D. E. The earliest true bugs and aphids from the Middle Triassic of France (Hemiptera). Russ. Entomol. J. 19, 179–182 (2010).
doi: 10.15298/rusentj.19.3.04
Criscione, J. & Grimaldi, D. A. The oldest predaceous water bugs (Insecta, Heteroptera, Belostomatidae), with implications for paleolimnology of the Triassic Cow Branch Formation. J. Paleontol. 91, 1166–1177 (2017).
doi: 10.1017/jpa.2017.48
Johnson, K. P. et al. Phylogenomics and the evolution of hemipteroid insects. Proc. Natl. Acad. Sci. USA 115, 12775–12780 (2018).
pubmed: 30478043
pmcid: 6294958
doi: 10.1073/pnas.1815820115
Rasnitsyn, A. P. New Triassic Hymenoptera from Central Asia. Paleontologicheskij Zh . 1, 88–96 (1964).
Rasnitsyn, A. P. New Xylidae (Hymenoptera) from the Mesozoic of Asia. Paleontologicheskij Zh . 4, 69–85 (1966).
Kopylov, D. S. New sawflies of the subfamily Madygellinae (Hymenoptera, Xyelidae) from the Middle-Upper Triassic of Kyrgyzstan. Paleontol. J. 48, 610–620 (2014).
doi: 10.1134/S0031030114060070
Riek, E. F. Fossil insects from the Triassic beds at Mt. Crosby, Queensland. Aust. J. Zool. 3, 654–691 (1955).
doi: 10.1071/ZO9550654
Engel, M. S. A new sawfly from the Triassic of Queensland (Hymenoptera: Xyelidae). Mem. Queensl. Mus. 51, 558 (2005).
Schlüter, T. Moltenia rieki n. gen., n. sp. (Hymenoptera: Xyelidae?), a tentative sawfly from the Molteno Formation (Upper Triassic), South Africa. PalZ 74, 75–78 (2000).
doi: 10.1007/BF02987953
Lara, M. B., Rasnitsyn, A. P. & Zavattieri, A. M. Potrerilloxyela menendezi gen. et sp. nov. from the Late Triassic of Argentina: the oldest representative of Xyelidae (Hymenoptera: Symphyta) for Americas. Paleontol. J. 48, 182–190 (2014).
doi: 10.1134/S0031030114020075
Oyama, N. & Maedo, H. Madygella humioi sp. nov. from the Upper Triassic Mine Group, southwest Japan: The oldest record of a sawfly (Hymenoptera: Symphyta) in East Asia. Paleontol. Res. 24, 64–71 (2020).
doi: 10.2517/2019PR005
Bechly, G. 11.16 Neuropterida: snakeflies, dobsonflies and lacewings in The Crato fossil beds of Brazil: window into an ancient world (eds. Martill, D. M., Bechly, G. & Loveridge, R. F.) 328-340 (Cambridge Univ. Press, 2007).
Shcherbakov, D. E. Permian ancestors of Hymenoptera and Raphidioptera. ZooKeys 358, 45–67 (2013).
doi: 10.3897/zookeys.358.6289
Vasilikopoulos, A. et al. An integrative phylogenomic approach to elucidate the evolutionary history and divergence times of Neuropterida (Insecta: Holometabola). BMC Evol. Biol. 20, 64 (2020).
pubmed: 32493355
pmcid: 7268685
doi: 10.1186/s12862-020-01631-6
Martins, C. C. et al. A world checklist of extant and extinct species of Megaloptera (Insecta: Neuropterida). Eur. J. Taxon. 812, 1–93 (2022).
Zhang, W. et al. New fossil Lepidoptera (Insecta: Amphiesmenoptera) from the Middle Jurassic Jiulongshan Formation of Northeastern China. PLoS ONE 8, e79500 (2013).
pubmed: 24278142
pmcid: 3838383
doi: 10.1371/journal.pone.0079500
Sohn, J. C., Labandeira, C. C. & Davis, D. R. The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates. BMC Evol. Biol. 15, 12 (2015).
pubmed: 25649001
pmcid: 4326409
doi: 10.1186/s12862-015-0290-8
Krzeminski, W., Krzeminska, E. & Papier, F. Grauvogelia arzvilleriana sp. n. - the oldest Diptera species (Lower/Middle Triassic of France). Acta Zool. Cracov. 37, 95–99 (1994).
Marchal-Papier, F. Les insectes du Buntsandstein des Vosges (NE de la France). Biodiversité et contributions aux modalités de la crise biologique du Permo-Trias, Ph. D. thesis (Université Louis Pasteur, 1998).
Labandeira, C. C., Kvaček, J. & Mostovski, M. B. Pollination drops, pollen, and insect pollination of mesozoic gymnosperms. Taxon 56, 663–695 (2007).
doi: 10.2307/25065852
Peñalver, E. et al. Long-proboscid flies as pollinators of Cretaceous gymnosperms. Curr. Biol. 14, 1917–1923 (2015).
doi: 10.1016/j.cub.2015.05.062
Labandeira, C. C. et al. The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies. Proc. R. Soc. B 283, 20152893 (2016).
pubmed: 26842570
pmcid: 4760178
doi: 10.1098/rspb.2015.2893
Peris, D. et al. False blister beetles and the expansion of gymnosperm-insect pollination modes before angiosperm dominance. Curr. Biol. 27, 897–904 (2017).
pubmed: 28262492
doi: 10.1016/j.cub.2017.02.009
Cai, C. et al. Beetle pollination of cycads in the Mesozoic. Curr. Biol. 28, 2806–2812 (2018).
pubmed: 30122529
doi: 10.1016/j.cub.2018.06.036
Liu, Q. et al. High niche diversity in Mesozoic pollinating lacewings. Nat. Commun. 9, 1–11 (2018).
Lin, X. et al. Life habits and evolutionary biology of new two-winged long-proboscid scorpionflies from mid-Cretaceous Myanmar amber. Nat. Commun. 10, 1235 (2019).
pubmed: 30874563
pmcid: 6420582
doi: 10.1038/s41467-019-09236-4
Peris, D. et al. Generalist pollen-feeding beetles during the mid-Cretaceous. iScience 23, 100913 (2020).
pubmed: 32191877
pmcid: 7113562
doi: 10.1016/j.isci.2020.100913
Zhao, X. et al. Mouthpart homologies and life habits of Mesozoic long-proboscis scorpionflies. Sci. Adv. 6, 1259 (2020).
doi: 10.1126/sciadv.aay1259
Lombardo, C., Tintori, A. & Tona, D. A new species of Sangiorgioicthys (Actinopterygii, Semionotiformes) from the Kalkschieferzone of Monte San Giorgio (Middle Triassic; Meride, Canton Ticino, Switzerland). Boll. Soc. Paleontol. Ital. 51, 203–212 (2012).
Wilcoxon, F. Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945).
doi: 10.2307/3001968
Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).
doi: 10.1093/biomet/52.3-4.591
Carpenter, F. M. Treatise on Invertebrate Paleontology. Part R. Arthropoda 4, Volume 4: Superclass Hexapoda (The University of Kansas and The Geological Society of America, 1992).
Rasnitsyn, A. P. Proiskhozhdenie i ehvolyutsiya nizshikh pereponchatokrylykh [The origin and evolution of lower Hymenoptera]. Tr. Paleontologicheskogo Inst. Akademii Nauk SSSR 123, 1–196 (1969).
Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J. X. The ICS International Chronostratigraphic Chart. Episodes 36, 199–204 (2013).
doi: 10.18814/epiiugs/2013/v36i3/002
Montagna, M., Magoga, G., Stockar, R. & Magnani, F. The contribution of the Middle Triassic fossil assemblage of Monte San Giorgio to insect evolution. https://figshare.com/s/c189f7a192b9b29bc03c .