In vivo assessment of the nephrotoxic effects of the synthetic cannabinoid AB-FUBINACA.
AB-FUBINACA
Acute kidney injury
KIM-1
NGAL
Synthetic cannabinoids
Journal
Forensic toxicology
ISSN: 1860-8965
Titre abrégé: Forensic Toxicol
Pays: Japan
ID NLM: 101315563
Informations de publication
Date de publication:
09 Aug 2024
09 Aug 2024
Historique:
received:
30
05
2024
accepted:
28
07
2024
medline:
9
8
2024
pubmed:
9
8
2024
entrez:
9
8
2024
Statut:
aheadofprint
Résumé
The widespread misuse of synthetic cannabinoids (SCs) has led to a notable increase in reported adverse effects, raising significant health concerns. SCs use has been particularly associated with acute kidney injury (AKI). However, the pathogenesis of SCs-induced AKI is not well-understood. We investigated the nephrotoxic effect of acute administration of N-[(1S)- 1-(aminocarbonyl)-2-methylpropyl]-1-[(4-fluorophenyl)methyl]-1H-indazole-3-carboxamide (AB-FUBINKA) (3 mg/kg for 5 days) in mice. Various parameters of oxidative stress, inflammation, and apoptosis have been quantified. The expressions of mitochondrial complexes (I-V) in renal tissues were also assessed. Our findings showed that AB-FUBINACA induced substantial impairment in the renal function that is accompanied by elevated expression of renal tubular damage markers; KIM-1 and NGAL. Administration of AB-FUBINACA was found to be associated with a significant increase in the expression of oxidative stress markers (iNOS, NOX4, NOX2, NOS3) and the level of lipid peroxidation in the kidney. The expression of pro-inflammatory markers (IL-6, TNF-alpha, NF-kB) was also enhanced following exposure to AB-FUBINACA. These findings were also correlated with increased expression of major apoptosis regulatory markers (Bax, caspase-9, caspase-3) and reduced expression of mitochondrial complexes I, III, and IV. These results indicate that AB-FUBINACA can trigger oxidative stress and inflammation, and activate caspase-dependent apoptosis in the kidney, with these processes being possibly linked to disruption of mitochondrial complexes and could be an underlying mechanism of SCs-induced nephrotoxicity.
Sections du résumé
BACKGROUND
BACKGROUND
The widespread misuse of synthetic cannabinoids (SCs) has led to a notable increase in reported adverse effects, raising significant health concerns. SCs use has been particularly associated with acute kidney injury (AKI). However, the pathogenesis of SCs-induced AKI is not well-understood.
METHODS
METHODS
We investigated the nephrotoxic effect of acute administration of N-[(1S)- 1-(aminocarbonyl)-2-methylpropyl]-1-[(4-fluorophenyl)methyl]-1H-indazole-3-carboxamide (AB-FUBINKA) (3 mg/kg for 5 days) in mice. Various parameters of oxidative stress, inflammation, and apoptosis have been quantified. The expressions of mitochondrial complexes (I-V) in renal tissues were also assessed.
RESULTS
RESULTS
Our findings showed that AB-FUBINACA induced substantial impairment in the renal function that is accompanied by elevated expression of renal tubular damage markers; KIM-1 and NGAL. Administration of AB-FUBINACA was found to be associated with a significant increase in the expression of oxidative stress markers (iNOS, NOX4, NOX2, NOS3) and the level of lipid peroxidation in the kidney. The expression of pro-inflammatory markers (IL-6, TNF-alpha, NF-kB) was also enhanced following exposure to AB-FUBINACA. These findings were also correlated with increased expression of major apoptosis regulatory markers (Bax, caspase-9, caspase-3) and reduced expression of mitochondrial complexes I, III, and IV.
CONCLUSION
CONCLUSIONS
These results indicate that AB-FUBINACA can trigger oxidative stress and inflammation, and activate caspase-dependent apoptosis in the kidney, with these processes being possibly linked to disruption of mitochondrial complexes and could be an underlying mechanism of SCs-induced nephrotoxicity.
Identifiants
pubmed: 39120650
doi: 10.1007/s11419-024-00699-9
pii: 10.1007/s11419-024-00699-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Yarmouk University
ID : 29/2021
Informations de copyright
© 2024. The Author(s).
Références
Castaneto MS, Gorelick DA, Desrosiers NA, Hartman RL, Pirard S, Huestis MA (2014) Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend 144:12–41
pubmed: 25220897
doi: 10.1016/j.drugalcdep.2014.08.005
Fattore L, Fratta W (2011) Beyond THC: the new generation of cannabinoid designer drugs. Front Behav Neurosci 5:60
pubmed: 22007163
pmcid: 3187647
doi: 10.3389/fnbeh.2011.00060
Vardakou I, Pistos C, Spiliopoulou Ch (2010) Spice drugs as a new trend: mode of action, identification and legislation. Toxicol Lett 197:157–162
pubmed: 20566335
doi: 10.1016/j.toxlet.2010.06.002
Auwärter V, Dresen S, Weinmann W, Müller M, Pütz M, Ferreirós N (2009) ‘Spice’ and other herbal blends: harmless incense or cannabinoid designer drugs? J Mass Spectrom 44:832–837
pubmed: 19189348
doi: 10.1002/jms.1558
Alipour A, Patel PB, Shabbir Z, Gabrielson S (2019) Review of the many faces of synthetic cannabinoid toxicities. Ment Health Clin 9(2):93–99
pubmed: 30842917
pmcid: 6398358
doi: 10.9740/mhc.2019.03.093
Alzu’bi A, Almahasneh F, Khasawneh R, Abu-El-Rub E, Baker WB, Al-Zoubi RM (2024) The synthetic cannabinoids menace: a review of health risks and toxicity. Eur J Med Res 29(1):49
pubmed: 38216984
pmcid: 10785485
doi: 10.1186/s40001-023-01443-6
Park F, Potukuchi PK, Moradi H, Kovesdy CP (2017) Cannabinoids and the kidney: effects in health and disease. Am J Physiol Renal Physiol 313(5):F1124–F1132
pubmed: 28747360
pmcid: 5792153
doi: 10.1152/ajprenal.00290.2017
Bhanushali GK, Jain G, Fatima H, Leisch LJ, Thornley-Brown D (2013) AKI associated with synthetic cannabinoids: a case series. Clin J Am Soc Nephrol 8(4):523–526
pubmed: 23243266
doi: 10.2215/CJN.05690612
Kazory A, Aiyer R (2013) Synthetic marijuana and acute kidney injury: an unforeseen association. Clin Kidney J 6(3):330–333
pubmed: 26064495
pmcid: 4400490
doi: 10.1093/ckj/sft047
Luciano RL, Perazella MA (2014) Nephrotoxic effects of designer drugs: synthetic is not better! Nat Rev Nephrol 10(6):314–324
pubmed: 24662435
doi: 10.1038/nrneph.2014.44
Thornton SL, Wood C, Friesen MW, Gerona RR (2013) Synthetic cannabinoid use associated with acute kidney injury. Clin Toxicol 51(3):189–190
doi: 10.3109/15563650.2013.770870
D’Errico S, Zanon M, Radaelli D, Concato M, Padovano M, Scopetti M, Frati P, Fineschi V (2022) Acute kidney injury (AKI) in young synthetic cannabinoids abusers. Biomedicines 10(8):1936
pubmed: 36009483
pmcid: 9406021
doi: 10.3390/biomedicines10081936
Srisung W, Jamal F, Prabhakar S (2015) Synthetic cannabinoids and acute kidney injury. Proc (Bayl Univ Med Cent) 28(4):475–477
pubmed: 26424946
Curtis B, Mahat B, Macklin M, Mihalo J, Dakroub AH (2022) “Acute kidney injury related to intoxication from synthetic cannabis: don’t you know that you’re toxic?” Cureus. https://doi.org/10.7759/cureus.23427
doi: 10.7759/cureus.23427
pubmed: 35702476
pmcid: 9179939
Larrinaga G, Varona A, Perez I, Sanz B, Ugalde A, Candenas ML, Pinto FM, Gil J, Lopez JI (2010) Expression of cannabinoid receptors in human kidney. Histol Histopathol 25(9):1133–1138
pubmed: 20607655
Lin CL, Hsu YC, Lee PH, Lei CC, Wang JY, Huang YT, Wang SY, Wang FS (2014) Cannabinoid receptor 1 disturbance of PPARgamma2 augments hyperglycemia induction of mesangial inflammation and fibrosis in renal glomeruli. J Mol Med (Berl) 92(7):779–792
pubmed: 24722948
doi: 10.1007/s00109-014-1125-6
Nam DH, Lee MH, Kim JE, Song HK, Kang YS, Lee JE, Kim HW, Cha JJ, Hyun YY, Kim SH, Han SY, Han KH, Han JY, Cha DR (2012) Blockade of cannabinoid receptor 1 improves insulin resistance, lipid metabolism, and diabetic nephropathy in db/db mice. Endocrinology 153(3):1387–1396
pubmed: 22234468
doi: 10.1210/en.2011-1423
Park F, Potukuchi PK, Moradi H, Kovesdy CP (2017) Cannabinoids and the kidney: effects in health and disease. American Journal of Physiology-Renal Physiology 313(5):F1124–F1132
pubmed: 28747360
pmcid: 5792153
doi: 10.1152/ajprenal.00290.2017
Sampaio LS, Taveira Da Silva R, Lima D, Sampaio CLC, Iannotti FA, Mazzarella E, Di Marzo V, Vieyra A, Reis RAM, Einicker-Lamas M (2015) The endocannabinoid system in renal cells: regulation of Na+ transport by CB 1 receptors through distinct cell signalling pathways. British J Pharmacol 172(19):4615–4625
doi: 10.1111/bph.13050
Tam J (2016) The emerging role of the endocannabinoid system in the pathogenesis and treatment of kidney diseases. J Basic Clin Physiol Pharmacol 27(3):267–276
pubmed: 26280171
doi: 10.1515/jbcpp-2015-0055
Pendergraft WF, Herlitz LC, Thornley-Brown D, Rosner M, Niles JL (2014) Nephrotoxic effects of common and emerging drugs of abuse. Clin J Am Soc Nephrol 9(11):1996–2005
pubmed: 25035273
pmcid: 4220747
doi: 10.2215/CJN.00360114
Silva JP, Carmo H, Carvalho F (2018) The synthetic cannabinoid XLR-11 induces in vitro nephrotoxicity by impairment of endocannabinoid-mediated regulation of mitochondrial function homeostasis and triggering of apoptosis. Toxicol Lett 287:59–69
pubmed: 29410032
doi: 10.1016/j.toxlet.2018.01.023
Silva JP, Araujo AM, de Pinho PG, Carmo H, Carvalho F (2019) Synthetic cannabinoids JWH-122 and THJ-2201 disrupt endocannabinoid-regulated mitochondrial function and activate apoptotic pathways as a primary mechanism of in vitro nephrotoxicity at in vivo relevant concentrations. Toxicol Sci 169(2):422–435
pubmed: 30796436
doi: 10.1093/toxsci/kfz050
Trecki J, Gerona RR, Schwartz MD (2015) Synthetic cannabinoid–related illnesses and deaths. N Engl J Med 373:103–107
pubmed: 26154784
doi: 10.1056/NEJMp1505328
RFDC (2014) Russian federal drug control Service. http://fskn.gov.ru/ includes/periodics/speeches_fskn/2014/1006/124332682/detail. shtml.
Trexler KR, Vanegas SO, Poklis JL, Kinsey SG (2020) The short-acting synthetic cannabinoid AB-FUBINACA induces physical dependence in mice. Drug Alcohol Depend 214:108179. https://doi.org/10.1016/j.drugalcdep.2020.108179
doi: 10.1016/j.drugalcdep.2020.108179
pubmed: 32688070
pmcid: 7461724
Banister SD, Moir M, Stuart J, Kevin RC, Wood KE, Longworth M, Wilkinson SM et al (2015) Pharmacology of indole and indazole synthetic cannabinoid designer drugs ab-fubinaca, adb-fubinaca, ab-pinaca, adb-pinaca, 5f-ab-pinaca, 5f-adb-pinaca, adbica, and 5f-adbica. ACS Chem Neurosci 6(9):1546–1559
pubmed: 26134475
doi: 10.1021/acschemneuro.5b00112
Meneton P, Ichikawa I, Inagami T, Schnermann J (2000) Renal physiology of the mouse. Am J Physiol Ren Physiol 278(3):F339–F351
doi: 10.1152/ajprenal.2000.278.3.F339
Malhotra R, Siew ED (2017) Biomarkers for the early detection and prognosis of acute kidney injury. Clin J Am Soc Nephrol 12(1):149–173
pubmed: 27827308
doi: 10.2215/CJN.01300216
Bolignano D, Donato V, Coppolino G, Campo S, Buemi A, Lacquaniti A, Buemi M (2008) Neutrophil gelatinase–associated lipocalin (NGAL) as a marker of kidney damage. Am J Kidney Dis 52(3):595–605
pubmed: 18725016
doi: 10.1053/j.ajkd.2008.01.020
Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV (2002) Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 62(1):237–244
pubmed: 12081583
doi: 10.1046/j.1523-1755.2002.00433.x
Wasilewska A, Taranta-Janusz K, Debek W, Zoch-Zwierz W, Kuroczycka-Saniutycz E (2011) KIM-1 and NGAL: new markers of obstructive nephropathy. Pediatr Nephrol 26(4):579–586
pubmed: 21279810
pmcid: 3043232
doi: 10.1007/s00467-011-1773-5
Oztas E, Abudayyak M, Celiksoz M, Özhan G (2019) Inflammation and oxidative stress are key mediators in AKB48-induced neurotoxicity in vitro. Toxicol In Vitro 55:101–107. https://doi.org/10.1016/j.tiv.2018.12.005
doi: 10.1016/j.tiv.2018.12.005
pubmed: 30550854
Sezer Y, Jannuzzi AT, Huestis MA, Alpertunga B (2020) In vitro assessment of the cytotoxic, genotoxic and oxidative stress effects of the synthetic cannabinoid JWH-018 in human SH-SY5Y neuronal cells. Toxicol Res 9:734–740. https://doi.org/10.1093/toxres/tfaa078
doi: 10.1093/toxres/tfaa078
Alzu’bi A, Zoubi MS, Al Trad B, AbuAlArjah MI, Shehab M, Alzoubi H et al (2022) Acute hepatic injury associated with acute administration of synthetic cannabinoid XLR-11 in mouse animal model. Toxics 10(11):668
pubmed: 36355959
pmcid: 9692363
doi: 10.3390/toxics10110668
Tomiyama K, Funada M (2011) Cytotoxicity of synthetic cannabinoids found in “spice” products: the role of cannabinoid receptors and the caspase cascade in the NG 108–15 cell line. Toxicol Lett 207(1):12–17. https://doi.org/10.1016/j.toxlet.2011.08.021 . (Epub 2011 Sep 2 PMID: 21907772)
doi: 10.1016/j.toxlet.2011.08.021
pubmed: 21907772
Tomiyama K, Funada M (2014) Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death. Toxicol Appl Pharmacol 274(1):17–23. https://doi.org/10.1016/j.taap.2013.10.028 . (Epub 2013 Nov 6 PMID: 24211273)
doi: 10.1016/j.taap.2013.10.028
pubmed: 24211273
Almada M, Costa L, Fonseca BM, Amaral C, Teixeira N, Correia-da-Silva G (2017) The synthetic cannabinoid WIN-55,212 induced-apoptosis in cytotrophoblasts cells by a mechanism dependent on CB1 receptor. Toxicology 15(385):67–73. https://doi.org/10.1016/j.tox.2017.04.013 . (Epub 2017 May 8 PMID: 28495606)
doi: 10.1016/j.tox.2017.04.013
Malheiro RF, Carmo H, Carvalho F, Silva JP (2022) Cannabinoid-mediated targeting of mitochondria on the modulation of mitochondrial function and dynamics. Pharmacol Res 187:106603
pubmed: 36516885
doi: 10.1016/j.phrs.2022.106603
Bénard G, Massa F, Puente N, Lourenço J, Bellocchio L, Soria-Gómez E, Matias I et al (2012) Mitochondrial CB1 receptors regulate neuronal energy metabolism. N Neurosci 15(4):558–564
doi: 10.1038/nn.3053
Lipina C, Hundal HS (2016) Modulation of cellular redox homeostasis by the endocannabinoid system. Open Biol 6(4):150276. https://doi.org/10.1098/rsob.150276
doi: 10.1098/rsob.150276
pubmed: 27248801
pmcid: 4852457
Gallelli CA, Calcagnini S, Romano A, Koczwara JB, De Ceglia M, Dante D, Villani R, Giudetti AM, Cassano T, Gaetani S (2018) Modulation of the oxidative stress and lipid peroxidation by endocannabinoids and their lipid analogues. Antioxidants. https://doi.org/10.3390/antiox7070093
doi: 10.3390/antiox7070093
pubmed: 30021985
pmcid: 6070960
Han KH et al (2009) CB1 and CB2 cannabinoid receptors differentially regulate the production of reactive oxygen species by macrophages. Cardiovasc Res 84:378–386
pubmed: 19596672
doi: 10.1093/cvr/cvp240
Horváth B, Mukhopadhyay P, Kechrid M, Patel V, Tanchian G, Wink DA, Gertsch J, Pacher P (2012) β-Caryophyllene ameliorates cisplatin-induced nephrotoxicity in a cannabinoid 2 receptor-dependent manner. Free Radic Biol Med 52:1325–1333. https://doi.org/10.1016/j.freeradbiomed.2012.01.014
doi: 10.1016/j.freeradbiomed.2012.01.014
pubmed: 22326488
pmcid: 3312970
Mukhopadhyay P, Pan H, Rajesh M, Batkai S, Patel V, Harvey-White J, Mukhopadhyay B, Hasko G, Gao B, Mackie K et al (2010) CB1 cannabinoid receptors promote oxidative/nitrosative stress, inflammation and cell death in a murine nephropathy model. Br J Pharmacol 160:657–668
pubmed: 20590569
pmcid: 2931565
doi: 10.1111/j.1476-5381.2010.00769.x
Mukhopadhyay P, Rajesh M, Pan H, Patel V, Mukhopadhyay B, Bátkai S, Gao B, Haskó G, Pacher P (2010) Cannabinoid-2 receptor limits inflammation, oxidative/nitrosative stress, and cell death in nephropathy. Free Radic Biol Med 48:457–467
pubmed: 19969072
doi: 10.1016/j.freeradbiomed.2009.11.022
Mukhopadhyay P, Baggelaar M, Erdelyi K, Cao Z, Cinar R, Fezza F, Ignatowska-Janlowska B, Wilkerson J, van Gils N, Hansen T et al (2016) The novel, orally available and peripherally restricted selective cannabinoid CB2 receptor agonist LEI-101 prevents cisplatin-induced nephrotoxicity. Br J Pharmacol 173:446–458
pubmed: 26398481
pmcid: 4728411
doi: 10.1111/bph.13338
Gruden G, Barutta F, Kunos G, Pacher P (2016) Role of the endocannabinoid system in diabetes and diabetic complications. Br J Pharmacol 173:1116–1127
pubmed: 26076890
doi: 10.1111/bph.13226
Rajesh M, Mukhopadhyay P, Haskó G, Liaudet L, Mackie K, Pacher P (2010) Cannabinoid-1 receptor activation induces reactive oxygen species-dependent and-independent mitogen-activated protein kinase activation and cell death in human coronary artery endothelial cells. Br J Pharmacol 160(3):688–700
pubmed: 20590572
pmcid: 2931568
doi: 10.1111/j.1476-5381.2010.00712.x
Alzu’bi A, Abu-El-Rub E, Almahasneh F, Tahat L, Athamneh RY, Khasawneh R, Alzoubi H, Ghorab DS, Almazari R, Zoubi MSA, Al-Zoubi RM (2024) Delineating the molecular mechanisms of hippocampal neurotoxicity induced by chronic administration of synthetic cannabinoid AB-FUBINACA in mice. Neurotoxicology 103:50–59. https://doi.org/10.1016/j.neuro.2024.05.009
doi: 10.1016/j.neuro.2024.05.009
pubmed: 38823587
Drori A, Permyakova A, Hadar R, Udi S, Nemirovski A, Tam J (2019) Cannabinoid-1 receptor regulates mitochondrial dynamics and function in renal proximal tubular cells. Diabetes Obes Metab 21(1):146–159
pubmed: 30091204
doi: 10.1111/dom.13497
Athanasiou A, Clarke AB, Turner AE, Kumaran NM, Vakilpour S, Smith PA, Bagiokou D et al (2007) Cannabinoid receptor agonists are mitochondrial inhibitors: a unified hypothesis of how cannabinoids modulate mitochondrial function and induce cell death. Biochem Biophys Res Commun 364(1):131–137
pubmed: 17931597
doi: 10.1016/j.bbrc.2007.09.107
Singh N, Hroudová J, Fišar Z (2015) Cannabinoid-induced changes in the activity of electron transport chain complexes of brain mitochondria. J Mol Neurosci 56:926–931
pubmed: 25820672
doi: 10.1007/s12031-015-0545-2
Lemarie A, Grimm S (2011) Mitochondrial respiratory chain complexes: apoptosis sensors mutated in cancer? Oncogene 30(38):3985–4003
pubmed: 21625217
doi: 10.1038/onc.2011.167
Wu KL, Hsu C, Chan JY (2007) Impairment of the mitochondrial respiratory enzyme activity triggers sequential activation of apoptosis-inducing factor-dependent and caspase-dependent signaling pathways to induce apoptosis after spinal cord injury. J Neurochem 101(6):1552–1566
pubmed: 17298387
doi: 10.1111/j.1471-4159.2006.04445.x
Castaneto MS, Wohlfarth A, Pang S, Zhu M, Scheidweiler KB, Kronstrand R, Huestis MA (2015) Identification of AB-FUBINACA metabolites in human hepatocytes and urine using high-resolution mass spectrometry. Forensic Toxicol 33:295–310
doi: 10.1007/s11419-015-0275-8