Structural basis of divergent substrate recognition and inhibition of human neurolysin.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
08 Aug 2024
Historique:
received: 02 04 2024
accepted: 15 07 2024
medline: 9 8 2024
pubmed: 9 8 2024
entrez: 8 8 2024
Statut: epublish

Résumé

A zinc metallopeptidase neurolysin (Nln) processes diverse bioactive peptides to regulate signaling in the mammalian nervous system. To understand how Nln interacts with various peptides with dissimilar sequences, we determined crystal structures of Nln in complex with diverse peptides including dynorphins, angiotensin, neurotensin, and bradykinin. The structures show that Nln binds these peptides in a large dumbbell-shaped interior cavity constricted at the active site, making minimal structural changes to accommodate different peptide sequences. The structures also show that Nln readily binds similar peptides with distinct registers, which can determine whether the peptide serves as a substrate or a competitive inhibitor. We analyzed the activities and binding of Nln toward various forms of dynorphin A peptides, which highlights the promiscuous nature of peptide binding and shows how dynorphin A (1-13) potently inhibits the Nln activity while dynorphin A (1-8) is efficiently cleaved. Our work provides insights into the broad substrate specificity of Nln and may aid in the future design of small molecule modulators for Nln.

Identifiants

pubmed: 39117724
doi: 10.1038/s41598-024-67639-w
pii: 10.1038/s41598-024-67639-w
doi:

Substances chimiques

neurolysin EC 3.4.24.16
Dynorphins 74913-18-1
Neurotensin 39379-15-2
Metalloendopeptidases EC 3.4.24.-
Bradykinin S8TIM42R2W
Angiotensins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

18420

Subventions

Organisme : NIGMS NIH HHS
ID : R35 GM118047
Pays : United States
Organisme : NIH HHS
ID : R01NS106879
Pays : United States
Organisme : NIH HHS
ID : R35GM118047
Pays : United States

Informations de copyright

© 2024. The Author(s).

Références

Checler, F. & Ferro, E. S. Neurolysin: From initial detection to latest advances. Neurochem. Res. 43, 2017–2024 (2018).
doi: 10.1007/s11064-018-2624-6 pubmed: 30159819
Shrimpton, C. N., Smith, A. I. & Lew, R. A. Soluble metalloendopeptidases and neuroendocrine signaling. Endocr. Rev. 23, 647–664 (2002).
doi: 10.1210/er.2001-0032 pubmed: 12372844
Checler, F., Vincent, J. P. & Kitabgi, P. Purification and characterization of a novel neurotensin-degrading peptidase from rat brain synaptic membranes. J. Biol. Chem. 261, 11274–11281 (1986).
doi: 10.1016/S0021-9258(18)67379-X pubmed: 3525564
Dauch, P., Vincent, J. P. & Checler, F. Molecular cloning and expression of rat brain endopeptidase 3.4.24.16. J. Biol. Chem. 270, 27266–27271 (1995).
doi: 10.1074/jbc.270.45.27266 pubmed: 7592986
Checler, F. Experimental stroke: Neurolysin back on stage. J. Neurochem. 129, 1–3 (2014).
doi: 10.1111/jnc.12635 pubmed: 24386939
Karamyan, V. T. The role of peptidase neurolysin in neuroprotection and neural repair after stroke. Neural Regen. Res. 16, 21–25 (2021).
doi: 10.4103/1673-5374.284904 pubmed: 32788443
Mirali, S. et al. The mitochondrial peptidase, neurolysin, regulates respiratory chain supercomplex formation and is necessary for AML viability. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaz8264 (2020).
doi: 10.1126/scitranslmed.aaz8264 pubmed: 32269163
Teixeira, P. F. et al. Mechanism of peptide binding and cleavage by the human mitochondrial peptidase neurolysin. J. Mol. Biol. 430, 348–362 (2018).
doi: 10.1016/j.jmb.2017.11.011 pubmed: 29183787
Rioli, V. et al. Novel natural peptide substrates for endopeptidase 24.15, neurolysin, and angiotensin-converting enzyme. J. Biol. Chem. 278, 8547–8555 (2003).
doi: 10.1074/jbc.M212030200 pubmed: 12500972
Brown, C. K. et al. Structure of neurolysin reveals a deep channel that limits substrate access. Proc. Natl. Acad. Sci. U. S. A. 98, 3127–3132 (2001).
doi: 10.1073/pnas.051633198 pubmed: 11248043 pmcid: 30618
Hines, C. S. et al. Allosteric inhibition of the neuropeptidase neurolysin. J. Biol. Chem. 289, 35605–35619 (2014).
doi: 10.1074/jbc.M114.620930 pubmed: 25378390 pmcid: 4271243
Uyar, A., Karamyan, V. T. & Dickson, A. Long-range changes in neurolysin dynamics upon inhibitor binding. J. Chem. Theory Comput. 14, 444–452 (2018).
doi: 10.1021/acs.jctc.7b00944 pubmed: 29179556
Jayaraman, S. et al. Identification and characterization of two structurally related dipeptides that enhance catalytic efficiency of neurolysin. J. Pharmacol. Exp. Ther. 379, 191–202 (2021).
doi: 10.1124/jpet.121.000840 pubmed: 34389655 pmcid: 8626779
Rahman, M. S. et al. Discovery of first-in-class peptidomimetic neurolysin activators possessing enhanced brain penetration and stability. J. Med. Chem. 64, 12705–12722 (2021).
doi: 10.1021/acs.jmedchem.1c00759 pubmed: 34436882 pmcid: 9295256
Esfahani, S. H., Abbruscato, T. J., Trippier, P. C. & Karamyan, V. T. Small molecule neurolysin activators, potential multi-mechanism agents for ischemic stroke therapy. Expert Opin. Ther. Targets 26, 401–404 (2022).
doi: 10.1080/14728222.2022.2077190 pubmed: 35543670
Jayaraman, S. et al. Peptidase neurolysin functions to preserve the brain after ischemic stroke in male mice. J. Neurochem. 153, 120–137 (2020).
doi: 10.1111/jnc.14864 pubmed: 31486527
Barrett, A. J. et al. Thimet oligopeptidase and oligopeptidase M or neurolysin. Methods Enzymol. 248, 529–556 (1995).
doi: 10.1016/0076-6879(95)48034-X pubmed: 7674943
Schwarzer, C. 30 years of dynorphins—New insights on their functions in neuropsychiatric diseases. Pharmacol. Ther. 123, 353–370 (2009).
doi: 10.1016/j.pharmthera.2009.05.006 pubmed: 19481570 pmcid: 2872771
Dahms, P. & Mentlein, R. Purification of the main somatostatin-degrading proteases from rat and pig brains, their action on other neuropeptides, and their identification as endopeptidases 24.15 and 24.16. Eur. J. Biochem. 208, 145–154 (1992).
doi: 10.1111/j.1432-1033.1992.tb17168.x pubmed: 1355047
Wangler, N. J. et al. Preparation and preliminary characterization of recombinant neurolysin for in vivo studies. J. Biotechnol. 234, 105–115 (2016).
doi: 10.1016/j.jbiotec.2016.07.007 pubmed: 27496565
Karamyan, V. T., Gadepalli, R., Rimoldi, J. M. & Speth, R. C. Brain AT1 angiotensin receptor subtype binding: importance of peptidase inhibition for identification of angiotensin II as its endogenous ligand. J. Pharmacol. Exp. Ther. 331, 170–177 (2009).
doi: 10.1124/jpet.109.157461 pubmed: 19587313
Karamyan, V. T. & Speth, R. C. Enzymatic pathways of the brain renin-angiotensin system: Unsolved problems and continuing challenges. Regul. Pept. 143, 15–27 (2007).
doi: 10.1016/j.regpep.2007.03.006 pubmed: 17493693 pmcid: 7114358
Machado, M. F. et al. The role of Tyr605 and Ala607 of thimet oligopeptidase and Tyr606 and Gly608 of neurolysin in substrate hydrolysis and inhibitor binding. Biochem. J. 404, 279–288 (2007).
doi: 10.1042/BJ20070060 pubmed: 17313369 pmcid: 1868798
Oliveira, V. et al. Selective neurotensin-derived internally quenched fluorogenic substrates for neurolysin (EC 3.4.24.16): Comparison with thimet oligopeptidase (EC 3.4.24.15) and neprilysin (EC 3.4.24.11). Anal. Biochem. 292, 257–265 (2001).
doi: 10.1006/abio.2001.5083 pubmed: 11355859
Oliveira, V. et al. Substrate specificity characterization of recombinant metallo oligo-peptidases thimet oligopeptidase and neurolysin. Biochemistry 40, 4417–4425 (2001).
doi: 10.1021/bi002715k pubmed: 11284698
Bar-Even, A. et al. The moderately efficient enzyme: Evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011).
doi: 10.1021/bi2002289 pubmed: 21506553
Lim, E. J. et al. Swapping the substrate specificities of the neuropeptidases neurolysin and thimet oligopeptidase. J. Biol. Chem. 282, 9722–9732 (2007).
doi: 10.1074/jbc.M609897200 pubmed: 17251185
Ray, K., Hines, C. S. & Rodgers, D. W. Mapping sequence differences between thimet oligopeptidase and neurolysin implicates key residues in substrate recognition. Protein Sci. 11, 2237–2246 (2002).
doi: 10.1110/ps.0216302 pubmed: 12192079 pmcid: 2373592
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
doi: 10.1107/S0907444910007493 pubmed: 20383002 pmcid: 2852313
Adams, P. D. et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
doi: 10.1107/S0907444909052925 pubmed: 20124702 pmcid: 2815670

Auteurs

Ke Shi (K)

Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.

Sounak Bagchi (S)

Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.

Jordis Bickel (J)

Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.

Shiva H Esfahani (SH)

Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
Department of Foundational Medical Studies, Oakland University, Rochester, MI, 48309, USA.

Lulu Yin (L)

Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.

Tiffany Cheng (T)

Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.

Vardan T Karamyan (VT)

Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA. vkaramyan@oakland.edu.
Department of Foundational Medical Studies, Oakland University, Rochester, MI, 48309, USA. vkaramyan@oakland.edu.

Hideki Aihara (H)

Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA. aihar001@umn.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH