An overview of S100 proteins and their functions in skin homeostasis, interface dermatitis conditions and other skin pathologies.

S100 calcitonin gene‐related peptide (CGRP) cutaneous lupus erythematosus (CLE) dermatomyositis (DM) inflammation interface dermatitis (ID) lichen planus (LP) neuroimmunology

Journal

Experimental dermatology
ISSN: 1600-0625
Titre abrégé: Exp Dermatol
Pays: Denmark
ID NLM: 9301549

Informations de publication

Date de publication:
Aug 2024
Historique:
revised: 04 07 2024
received: 24 02 2024
accepted: 28 07 2024
medline: 8 8 2024
pubmed: 8 8 2024
entrez: 8 8 2024
Statut: ppublish

Résumé

S100 proteins comprise a family of structurally related proteins that are calcium-sensitive. S100 proteins have been found to play various roles in regulation of cell apoptosis, cell proliferation and differentiation, cell migration and invasion, energy metabolism, calcium homeostasis, protein phosphorylation, anti-microbial activity and inflammation in a variety of cell types. While the specific function of many S100 proteins remains unknown, some of the S100 proteins serve as disease biomarkers as well as possible therapeutic targets in skin diseases. Interface dermatitis (ID) is a histopathological term that covers many different skin conditions including cutaneous lupus erythematosus, lichen planus, and dermatomyositis. These pathologies share similar histological features, which include basal cell vacuolization and lymphocytic infiltration at the dermal-epidermal junction. In this review, we summarize how the S100 protein family contributes to both homeostatic and inflammatory processes in the skin. We also highlight the role of S100 proteins in neuronal signalling, describing how this might contribute to neuroimmune interactions in ID and other skin pathologies. Last, we discuss what is known about the S100 family proteins as both biomarkers and potential treatment targets in specific pathologies.

Identifiants

pubmed: 39115029
doi: 10.1111/exd.15158
doi:

Substances chimiques

S100 Proteins 0
Biomarkers 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

e15158

Subventions

Organisme : Dermatology Foundation

Informations de copyright

© 2024 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Références

Singh P, Ali SA. Multifunctional role of S100 protein family in the immune system: an update. Cells. 2022;11(15):2274. doi:10.3390/cells11152274
Donato R, Cannon BR, Sorci G, et al. Functions of S100 proteins. Curr Mol Med. 2013;13(1):24‐57.
Eckert RL, Broome AM, Ruse M, Robinson N, Ryan D, Lee K. S100 proteins in the epidermis. J Invest Dermatol. 2004;123(1):23‐33.
Bresnick AR, Weber DJ, Zimmer DB. S100 proteins in cancer. Nat Rev Cancer. 2015;15(2):96‐109.
Langeh U, Singh S. Targeting S100B protein as a surrogate biomarker and its role in various neurological disorders. Curr Neuropharmacol. 2021;19(2):265‐277.
Xia C, Braunstein Z, Toomey AC, Zhong J, Rao X. S100 proteins as an important regulator of macrophage inflammation. Front Immunol. 2017;8:1908.
Hsu K, Champaiboon C, Guenther BD, et al. Anti‐infective protective properties of S100 calgranulins. Antiinflamm Antiallergy Agents Med Chem. 2009;8(4):290‐305.
Gonzalez LL, Garrie K, Turner MD. Role of S100 proteins in health and disease. Biochim Biophys Acta, Mol Cell Res. 2020;1867(6):118677.
Hattori F, Kiatsurayanon C, Okumura K, et al. The antimicrobial protein S100A7/psoriasin enhances the expression of keratinocyte differentiation markers and strengthens the skin's tight junction barrier. Br J Dermatol. 2014;171(4):742‐753.
Kehl‐Fie TE, Zhang Y, Moore JL, et al. MntABC and MntH contribute to systemic Staphylococcus aureus infection by competing with calprotectin for nutrient manganese. Infect Immun. 2013;81(9):3395‐3405.
Wang J, Lonergan ZR, Gonzalez‐Gutierrez G, et al. Multi‐metal restriction by calprotectin impacts De novo Flavin biosynthesis in Acinetobacter baumannii. Cell Chem Biol. 2019;26(5):745‐755.e7.
Wang S, Song R, Wang Z, Jing Z, Wang S, Ma J. S100A8/A9 in inflammation. Front Immunol. 2018;9:1298.
Christmann C, Zenker S, Martens L, et al. Interleukin 17 promotes expression of Alarmins S100A8 and S100A9 during the inflammatory response of keratinocytes. Front Immunol. 2020;11:599947.
Damo SM, Kehl‐Fie TE, Sugitani N, et al. Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens. Proc Natl Acad Sci USA. 2013;110(10):3841‐3846.
Leukert N, Vogl T, Strupat K, Reichelt R, Sorg C, Roth J. Calcium‐dependent tetramer formation of S100A8 and S100A9 is essential for biological activity. J Mol Biol. 2006;359(4):961‐972.
Vogl T, Stratis A, Wixler V, et al. Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation. J Clin Invest. 2018;128(5):1852‐1866.
Su W, Wang P, Dong Q, Li S, Hu S. S100A8 accelerates wound healing by promoting adipose stem cell proliferation and suppressing inflammation. Regen Ther. 2022;21:166‐174.
Moroz OV, Antson AA, Grist SJ, et al. Structure of the human S100A12‐copper complex: implications for host‐parasite defence. Acta Crystallogr D Biol Crystallogr. 2003;59(Pt 5):859‐867.
Cau L, Williams MR, Butcher AM, et al. Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis. J Allergy Clin Immunol. 2021;147(3):955‐966.e16.
Liang H, Li J, Zhang K. Pathogenic role of S100 proteins in psoriasis. Front Immunol. 2023;14:1191645.
Kreuter A, Jaouhar M, Skrygan M, et al. Expression of antimicrobial peptides in different subtypes of cutaneous lupus erythematosus. J Am Acad Dermatol. 2011;65(1):125‐133.
Yano J, Kolls JK, Happel KI, Wormley F, Wozniak KL, Fidel PL Jr. The acute neutrophil response mediated by S100 alarmins during vaginal Candida infections is independent of the Th17‐pathway. PLoS One. 2012;7(9):e46311.
Xu K, Geczy CL. IFN‐gamma and TNF regulate macrophage expression of the chemotactic S100 protein S100A8. J Immunol. 2000;164(9):4916‐4923.
Niyonsaba F, Kiatsurayanon C, Chieosilapatham P, Ogawa H. Friends or foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp Dermatol. 2017;26(11):989‐998.
Yano J, Palmer GE, Eberle KE, et al. Vaginal epithelial cell‐derived S100 alarmins induced by Candida albicans via pattern recognition receptor interactions are sufficient but not necessary for the acute neutrophil response during experimental vaginal candidiasis. Infect Immun. 2014;82(2):783‐792.
Cornish CJ, Devery JM, Poronnik P, Lackmann M, Cook DI, Geczy CL. S100 protein CP‐10 stimulates myeloid cell chemotaxis without activation. J Cell Physiol. 1996;166(2):427‐437.
Yano J, Noverr MC, Fidel PL Jr. Cytokines in the host response to Candida vaginitis: identifying a role for non‐classical immune mediators, S100 alarmins. Cytokine. 2012;58(1):118‐128.
Salama I, Malone PS, Mihaimeed F, Jones JL. A review of the S100 proteins in cancer. Eur J Surg Oncol. 2008;34(4):357‐364.
Grimbaldeston MA, Geczy CL, Tedla N, Finlay‐Jones JJ, Hart PH. S100A8 induction in keratinocytes by ultraviolet a irradiation is dependent on reactive oxygen intermediates. J Invest Dermatol. 2003;121(5):1168‐1174.
Endoh Y, Chung YM, Clark IA, Geczy CL, Hsu K. IL‐10‐dependent S100A8 gene induction in monocytes/macrophages by double‐stranded RNA. J Immunol. 2009;182(4):2258‐2268.
Sade‐Feldman M, Kanterman J, Ish‐Shalom E, Elnekave M, Horwitz E, Baniyash M. Tumor necrosis factor‐α blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity. 2013;38(3):541‐554.
Liu S, Zhang H, Li Y, et al. S100A4 enhances protumor macrophage polarization by control of PPAR‐γ‐dependent induction of fatty acid oxidation. J Immunother Cancer. 2021;9(6):e002548. doi:10.1136/jitc-2021-002548
Phipps KD, Surette AP, O'Connell PA, Waisman DM. Plasminogen receptor S100A10 is essential for the migration of tumor‐promoting macrophages into tumor sites. Cancer Res. 2011;71(21):6676‐6683.
Dempsey BR, Shaw GS. Identification of calcium‐independent and calcium‐enhanced binding between S100B and the dopamine D2 receptor. Biochemistry. 2011;50(42):9056‐9065.
Nacken W, Mooren FC, Manitz MP, Bode G, Sorg C, Kerkhoff C. S100A9 deficiency alters adenosine‐5′‐triphosphate induced calcium signalling but does not generally interfere with calcium and zinc homeostasis in murine neutrophils. Int J Biochem Cell Biol. 2005;37(6):1241‐1253.
Sedaghat F, Notopoulos A. S100 protein family and its application in clinical practice. Hippokratia. 2008;12(4):198‐204.
Hoffmann HJ, Olsen E, Etzerodt M, et al. Psoriasin binds calcium and is upregulated by calcium to levels that resemble those observed in normal skin. J Invest Dermatol. 1994;103(3):370‐375.
Millward TA, Heizmann CW, Schäfer BW, Hemmings BA. Calcium regulation of Ndr protein kinase mediated by S100 calcium‐binding proteins. EMBO J. 1998;17(20):5913‐5922.
Leclerc E, Fritz G, Vetter SW, Heizmann CW. Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta. 2009;1793(6):993‐1007.
Wang F, Kim BS. Itch: a paradigm of Neuroimmune crosstalk. Immunity. 2020;52(5):753‐766.
Feng J, Luo J, Yang P, Du J, Kim BS, Hu H. Piezo2 channel‐Merkel cell signaling modulates the conversion of touch to itch. Science. 2018;360(6388):530‐533.
Kim BS, Berger TG, Yosipovitch G. Chronic pruritus of unknown origin (CPUO): uniform nomenclature and diagnosis as a pathway to standardized understanding and treatment. J Am Acad Dermatol. 2019;81(5):1223‐1224.
Kashem SW, Riedl MS, Yao C, Honda CN, Vulchanova L, Kaplan DH. Nociceptive sensory fibers drive Interleukin‐23 production from CD301b+ dermal dendritic cells and drive Protective cutaneous immunity. Immunity. 2015;43(3):515‐526.
Cohen JA, Edwards TN, Liu AW, et al. Cutaneous TRPV1+ neurons trigger Protective innate type 17 anticipatory immunity. Cell. 2019;178(4):919‐932.
O'Leary CJ, Creamer D, Higgins E, Weinman J. Perceived stress, stress attributions and psychological distress in psoriasis. J Psychosom Res. 2004;57(5):465‐471.
Clementi ME, Sampaolese B, Giardina B. S100b induces expression of myoglobin in APβ treated neuronal cells in vitro: a possible neuroprotective mechanism. Curr Aging Sci. 2016;9(4):279‐283.
Jin R, Luo L, Zheng J. The trinity of skin: skin homeostasis as a neuro‐endocrine‐immune organ. Life (Basel). 2022;12(5):725. doi:10.3390/life12050725
Marek‐Jozefowicz L, Nedoszytko B, Grochocka M, et al. Molecular mechanisms of neurogenic inflammation of the skin. Int J Mol Sci. 2023;24(5):5001. doi:10.3390/ijms24055001
Lefèvre‐Utile A, Braun C, Haftek M, Aubin F. Five functional aspects of the epidermal barrier. Int J Mol Sci. 2021;22(21):11676. doi:10.3390/ijms222111676
Wicki R, Marenholz I, Mischke D, Schäfer BW, Heizmann CW. Characterization of the human S100A12 (calgranulin C, p6, CAAF1, CGRP) gene, a new member of the 5100 gene cluster on chromosome 1q21. Cell Calcium. 1996;20(6):459‐464.
Saria A. Substance P in sensory nerve fibres contributes to the development of oedema in the rat hind paw after thermal injury. Br J Pharmacol. 1984;82(1):217‐222.
Brain SD, Williams TJ. Interactions between the tachykinins and calcitonin gene‐related peptide lead to the modulation of oedema formation and blood flow in rat skin. Br J Pharmacol. 1989;97(1):77‐82.
Lei L, Yuan X, Wang S, et al. Mitogen‐activated protein kinase pathways are involved in the upregulation of calcitonin gene‐related peptide of rat trigeminal ganglion after organ culture. J Mol Neurosci. 2012;48(1):53‐65.
Choi JE, Di Nardo A. Skin neurogenic inflammation. Semin Immunopathol. 2018;40(3):249‐259.
Carboni L, El Khoury A, Beiderbeck DI, Neumann ID, Mathé AA. Neuropeptide Y, calcitonin gene‐related peptide, and neurokinin a in brain regions of HAB rats correlate with anxiety‐like behaviours. Eur Neuropsychopharmacol. 2022;57:1‐14.
Abdelhadi S, Nordlind K, Johansson B, Theodorsson E, Holst M, Lönndahl L. Expression of calcitonin gene‐related peptide in atopic dermatitis and correlation with distress. Immunopharmacol Immunotoxicol. 2024;46(1):67‐72.
Alsouhibani A, Speck P, Cole EF, et al. Quantitative sensory testing to characterize sensory changes in hidradenitis Suppurativa skin lesions. JAMA Dermatol. 2023;159(10):1102‐1111.
Estadt SN, Maz MP, Musai J, Kahlenberg JM. Mechanisms of photosensitivity in autoimmunity. J Invest Dermatol. 2022;142(3 Pt B):849‐856.
Elmets CA, Korman NJ, Prater EF, et al. Joint AAD‐NPF guidelines of care for the management and treatment of psoriasis with topical therapy and alternative medicine modalities for psoriasis severity measures. J Am Acad Dermatol. 2021;84(2):432‐470.
Kurpet K, Chwatko G. S100 proteins as novel therapeutic targets in psoriasis and other autoimmune diseases. Molecules. 2022;27(19):6640. doi:10.3390/molecules27196640
Wilsmann‐Theis D, Wagenpfeil J, Holzinger D, et al. Among the S100 proteins, S100A12 is the most significant marker for psoriasis disease activity. J Eur Acad Dermatol Venereol. 2016;30(7):1165‐1170.
Watson PH, Leygue ER, Murphy LC. Psoriasin (S100A7). Int J Biochem Cell Biol. 1998;30(5):567‐571.
Ekman AK, Vegfors J, Eding CB, Enerbäck C. Overexpression of Psoriasin (S100A7) contributes to dysregulated differentiation in psoriasis. Acta Derm Venereol. 2017;97(4):441‐448.
Granata M, Skarmoutsou E, Mazzarino MC, D'Amico F. S100A7 in psoriasis: Immunodetection and activation by CRISPR technology. Methods Mol Biol. 2019;1929:729‐738.
Defrêne J, Berrazouane S, Esparza N, et al. Deletion of S100a8 and S100a9 enhances skin hyperplasia and promotes the Th17 response in Imiquimod‐induced psoriasis. J Immunol. 2021;206(3):505‐514.
Hegde VK, Khadilkar UN. A clinicopathological study of interface dermatitis. Indian J Pathol Microbiol. 2014;57(3):386‐389.
Brooks EN, Colbert MD, Sander IB. Interface dermatitis: delineating the diagnosis with adaptive immune markers. J Cutan Pathol. 2022;49(7):669‐671.
Sehgal VN, Srivastava G, Sharma S, Sehgal S, Verma P. Lichenoid tissue reaction/interface dermatitis: recognition, classification, etiology, and clinicopathological overtones. Indian J Dermatol Venereol Leprol. 2011;77(4):418‐429. quiz 430.
Brinster NK. Dermatopathology for the surgical pathologist: a pattern‐based approach to the diagnosis of inflammatory skin disorders (part I). Adv Anat Pathol. 2008;15(2):76‐96. doi:10.1097/PAP.0b013e3181664e8d
Brinster NK. Dermatopathology for the surgical pathologist: a pattern‐based approach to the diagnosis of inflammatory skin disorders (part II). Adv Anat Pathol. 2008;15(6):350‐369. doi:10.1097/PAP.0b013e31818b1ac6
Desjardins JF, Teichert‐Kuliszewska K, Parker T. S100A1: a pluripotent regulator of cardiac and vascular function. Can J Cardiol. 2010;26(Suppl A):9A‐12A.
Böni R, Burg G, Doguoglu A, et al. Immunohistochemical localization of the Ca2+ binding S100 proteins in normal human skin and melanocytic lesions. Br J Dermatol. 1997;137(1):39‐43.
Sugino H, Sawada Y. Influence of S100A2 in human diseases. Diagnostics (Basel). 2022;12(7):1756. doi:10.3390/diagnostics12071756
Kizawa K, Tsuchimoto S, Hashimoto K, Uchiwa H. Gene expression of mouse S100A3, a cysteine‐rich calcium‐binding protein, in developing hair follicle. J Invest Dermatol. 1998;111(5):879‐886.
Pleštilová L, Mann H, Andrés Cerezo L, Pecha O, Vencovský J, Šenolt L. The metastasis promoting protein S100A4 levels associate with disease activity rather than cancer development in patients with idiopathic inflammatory myopathies. Arthritis Res Ther. 2014;16(5):468.
Yang F, Ma J, Zhu D, et al. The role of S100A6 in human diseases: molecular mechanisms and therapeutic potential. Biomol Ther. 2023;13(7):1139. doi:10.3390/biom13071139
Son ED, Kim HJ, Kim KH, et al. S100A7 (psoriasin) inhibits human epidermal differentiation by enhanced IL‐6 secretion through IκB/NF‐κB signalling. Exp Dermatol. 2016;25(8):636‐641.
Petersson S, Shubbar E, Enerbäck L, Enerbäck C. Expression patterns of S100 proteins in melanocytes and melanocytic lesions. Melanoma Res. 2009;19(4):215‐225.
Cross SS, Hamdy FC, Deloulme JC, Rehman I. Expression of S100 proteins in normal human tissues and common cancers using tissue microarrays: S100A6, S100A8, S100A9 and S100A11 are all overexpressed in common cancers. Histopathology. 2005;46(3):256‐269.
Meijer B, Gearry RB, Day AS. The role of S100A12 as a systemic marker of inflammation. Int J Inflamm. 2012;2012:907078.
Massi D, Landriscina M, Piscazzi A, et al. S100A13 is a new angiogenic marker in human melanoma. Mod Pathol. 2010;23(6):804‐813.
Basnet S, Sharma S, Costea DE, Sapkota D. Expression profile and functional role of S100A14 in human cancer. Oncotarget. 2019;10(31):2996‐3012.
Batycka‐Baran A, Hattinger E, Zwicker S, et al. Leukocyte‐derived koebnerisin (S100A15) and psoriasin (S100A7) are systemic mediators of inflammation in psoriasis. J Dermatol Sci. 2015;79(3):214‐221.
Prica F, Radon T, Cheng Y, Crnogorac‐Jurcevic T. The life and works of S100P ‐ from conception to cancer. Am J Cancer Res. 2016;6(2):562‐576.
Papadopoulou C, Chew C, Wilkinson MGL, McCann L, Wedderburn LR. Juvenile idiopathic inflammatory myositis: an update on pathophysiology and clinical care. Nat Rev Rheumatol. 2023;19(6):343‐362.
Qudsiya Z, Waseem M. Dermatomyositis. StatPearls Publishing; 2023.
Wong D, Kea B, Pesich R, et al. Interferon and biologic signatures in dermatomyositis skin: specificity and heterogeneity across diseases. PLoS One. 2012;7(1):e29161.
Shaw K, Doudican N, Mishra A, et al. Differential gene expression in lesional skin may signify immune‐mediated lung parenchymal damage in patients with dermatomyositis. J Am Acad Dermatol. 2023;88(5):1201‐1204.
Andrés Cerezo L, Hulejová H, Šumová B, et al. Pro‐inflammatory S100A11 is elevated in inflammatory myopathies and reflects disease activity and extramuscular manifestations in myositis. Cytokine. 2019;116:13‐20.
Lou Y, Zheng Y, Fan B, et al. Serum S100A12 levels are correlated with clinical severity in patients with dermatomyositis‐associated interstitial lung disease. J Int Med Res. 2020;48(4):300060519887841.
Chen YJ, Wu CY, Huang YL, Wang CB, Shen JL, Chang YT. Cancer risks of dermatomyositis and polymyositis: a nationwide cohort study in Taiwan. Arthritis Res Ther. 2010;12(2):R70.
Boye K, Maelandsmo GM. S100A4 and metastasis: a small actor playing many roles. Am J Pathol. 2010;176(2):528‐535.
Arnold DL, Krishnamurthy K. Lichen Planus. StatPearls Publishing; 2023.
de Carvalho GC, Domingues R, de Sousa Nogueira MA, et al. Up‐regulation of Proinflammatory genes and cytokines induced by S100A8 in CD8+ T cells in lichen planus. Acta Derm Venereol. 2016;96(4):485‐489.
Ferrisse TM, de Oliveira AB, Palaçon MP, et al. Immunohistochemical evaluation of Langerhans cells in oral lichen planus and oral lichenoid lesions. Arch Oral Biol. 2021;124:105027.
Kim JW, Jung JY, Lee SW, Baek WY, Kim HA, Suh CH. S100A8 in serum, urine, and saliva as a potential biomarker for systemic lupus erythematosus. Front Immunol. 2022;13:886209.
Kitagori K, Oku T, Wakabayashi M, et al. Expression of S100A8 protein on B cells is associated with disease activity in patients with systemic lupus erythematosus. Arthritis Res Ther. 2023;25(1):76.
Tydén H, Lood C, Gullstrand B, et al. Pro‐inflammatory S100 proteins are associated with glomerulonephritis and anti‐dsDNA antibodies in systemic lupus erythematosus. Lupus. 2017;26(2):139‐149.
Golbus J, McCune WJ. Lupus nephritis. Classification, prognosis, immunopathogenesis, and treatment. Rheum Dis Clin N Am. 1994;20(1):213‐242.
Davies JC, Midgley A, Carlsson E, et al. Urine and serum S100A8/A9 and S100A12 associate with active lupus nephritis and may predict response to rituximab treatment. RMD Open. 2020;6(2):e001257. doi:10.1136/rmdopen-2020-001257
Wakiya R, Kameda T, Ueeda K, et al. Hydroxychloroquine modulates elevated expression of S100 proteins in systemic lupus erythematosus. Lupus. 2019;28(7):826‐833.
Wakiya R, Ueeda K, Nakashima S, et al. Effect of add‐on hydroxychloroquine therapy on serum proinflammatory cytokine levels in patients with systemic lupus erythematosus. Sci Rep. 2022;12(1):10175.
Gilliam JN, Sontheimer RD. Distinctive cutaneous subsets in the spectrum of lupus erythematosus. J Am Acad Dermatol. 1981;4(4):471‐475.
Little AJ, Vesely MD. Cutaneous lupus erythematosus: current and future pathogenesis‐directed therapies. Yale J Biol Med. 2020;93(1):81‐95.
McDaniel B, Sukumaran S, Koritala T, Tanner LS. Discoid Lupus Erythematosus. StatPearls Publishing; 2023.
Lood C, Stenström M, Tydén H, et al. Protein synthesis of the pro‐inflammatory S100A8/A9 complex in plasmacytoid dendritic cells and cell surface S100A8/A9 on leukocyte subpopulations in systemic lupus erythematosus. Arthritis Res Ther. 2011;13(2):R60.
Loser K, Vogl T, Voskort M, et al. The toll‐like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+ T cells. Nat Med. 2010;16(6):713‐717.
Auquier‐Dunant A, Mockenhaupt M, Naldi L, Correia O, Schröder W, Roujeau JC. Correlations between clinical patterns and causes of erythema Multiforme Majus, Stevens‐Johnson syndrome, and toxic epidermal necrolysis: results of an international prospective study. Arch Dermatol. 2002;138(8):1019‐1024.
Forman R, Koren G, Shear NH. Erythema multiforme, Stevens‐Johnson syndrome and toxic epidermal necrolysis in children: a review of 10 years' experience. Drug Saf. 2002;25(13):965‐972.
Hama N, Nishimura K, Hasegawa A, et al. Galectin‐7 as a potential biomarker of Stevens‐Johnson syndrome/toxic epidermal necrolysis: identification by targeted proteomics using causative drug‐exposed peripheral blood cells. J Allergy Clin Immunol Pract. 2019;7(8):2894‐2897.
Panpruk R, Puangsricharern V, Klaewsongkram J, et al. Clinical parameters and biological markers associated with acute severe ocular complications in Stevens‐Johnson syndrome and toxic epidermal necrolysis. Sci Rep. 2021;11(1):20275.
Chuenwipasakul D, Washrawirul C, Panpruk R, et al. Correlations between histopathologic findings, serum biomarker levels, and clinical outcomes in Stevens‐Johnson syndrome/toxic epidermal necrolysis (SJS/TEN). Sci Rep. 2023;13(1):13620.
Yoshioka M, Sawada Y, Saito‐Sasaki N, et al. High S100A2 expression in keratinocytes in patients with drug eruption. Sci Rep. 2021;11(1):5493.
Paquet P, Meuwis MA, Mazzucchelli G, Delvenne P, Piérard GE. Proteomic kinetic analysis of blister fluid and serum in a patient with drug‐induced toxic epidermal necrolysis. A comparison with skin immunohistochemistry. Curr. Drug Saf. 2012;7(5):339‐351.
Zhong JM, Li J, Kang AD, et al. Protein S100‐A8: a potential metastasis‐associated protein for breast cancer determined via iTRAQ quantitative proteomic and clinicopathological analysis. Oncol Lett. 2018;15(4):5285‐5293.
Sapkota D, Bruland O, Costea DE, Haugen H, Vasstrand EN, Ibrahim SO. S100A14 regulates the invasive potential of oral squamous cell carcinoma derived cell‐lines in vitro by modulating expression of matrix metalloproteinases, MMP1 and MMP9. Eur J Cancer. 2011;47(4):600‐610.
Fullen DR, Garrisi AJ, Sanders D, Thomas D. Expression of S100A6 protein in a broad spectrum of cutaneous tumors using tissue microarrays. J Cutan Pathol. 2008;35(Suppl 2):28‐34.
Alowami S, Qing G, Emberley E, Snell L, Watson PH. Psoriasin (S100A7) expression is altered during skin tumorigenesis. BMC Dermatol. 2003;3:1.
Xiong TF, Pan FQ, Li D. Expression and clinical significance of S100 family genes in patients with melanoma. Melanoma Res. 2019;29(1):23‐29.
Bánfalvi T, Gilde K, Gergye M, Boldizsár M, Kremmer T, Ottó S. Use of serum 5‐S‐CD and S‐100B protein levels to monitor the clinical course of malignant melanoma. Eur J Cancer. 2003;39(2):164‐169.
Faries MB, Gupta RK, Ye X, et al. A comparison of 3 tumor markers (MIA, TA90IC, S100B) in stage III melanoma patients. Cancer Investig. 2007;25(5):285‐293.
Markowitz J, Chen I, Gitti R, et al. Identification and characterization of small molecule inhibitors of the calcium‐dependent S100B‐p53 tumor suppressor interaction. J Med Chem. 2004;47(21):5085‐5093.
Henze G, Dummer R, Joller‐Jemelka HI, Böni R, Burg G. Serum S100—a marker for disease monitoring in metastatic melanoma. Dermatology. 1997;194(3):208‐212.
Peric B, Zagar I, Novakovic S, Zgajnar J, Hocevar M. Role of serum S100B and PET‐CT in follow‐up of patients with cutaneous melanoma. BMC Cancer. 2011;11:328.
Shin J, Monti S, Aires DJ, et al. Lesional gene expression profiling in cutaneous T‐cell lymphoma reveals natural clusters associated with disease outcome. Blood. 2007;110(8):3015‐3027.
Suga H, Sugaya M, Miyagaki T, et al. Skin barrier dysfunction and low antimicrobial peptide expression in cutaneous T‐cell lymphoma. Clin Cancer Res. 2014;20(16):4339‐4348.
Rodriguez‐Galindo C, Allen CE. Langerhans cell histiocytosis. Blood. 2020;135(16):1319‐1331.
Ugurel S, Pföhler C, Tilgen W, Reinhold U. S100‐beta serum protein—a new marker in the diagnosis and monitoring of Langerhans cell histiocytosis? Br J Dermatol. 2000;143(1):201‐202.

Auteurs

Warda Abdi (W)

Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA.
Department of Medicine, Medical College of Georgia, Augusta, Georgia, USA.

Andrew Romasco (A)

Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA.

Dany Alkurdi (D)

Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA.

Elise Santacruz (E)

Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA.

Isabel Okinedo (I)

Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA.

Yuying Zhang (Y)

Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA.

Shriya Kannan (S)

Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA.

Saeed Shakiba (S)

Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA.

Jillian M Richmond (JM)

Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH