The crystal structure of Acinetobacter baumannii bacterioferritin reveals a heteropolymer of bacterioferritin and ferritin subunits.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
06 Aug 2024
06 Aug 2024
Historique:
received:
29
05
2024
accepted:
01
08
2024
medline:
7
8
2024
pubmed:
7
8
2024
entrez:
6
8
2024
Statut:
epublish
Résumé
Iron storage proteins, e.g., vertebrate ferritin, and the ferritin-like bacterioferritin (Bfr) and bacterial ferritin (Ftn), are spherical, hollow proteins that catalyze the oxidation of Fe
Identifiants
pubmed: 39107474
doi: 10.1038/s41598-024-69156-2
pii: 10.1038/s41598-024-69156-2
doi:
Substances chimiques
bacterioferritin
9035-38-5
Ferritins
9007-73-2
Cytochrome b Group
0
Bacterial Proteins
0
Iron
E1UOL152H7
Protein Subunits
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
18242Subventions
Organisme : NIH HHS
ID : AI169344
Pays : United States
Organisme : NIH HHS
ID : AI169344
Pays : United States
Organisme : NIH HHS
ID : AI169344
Pays : United States
Informations de copyright
© 2024. The Author(s).
Références
Andrews, S. C. Iron storage in bacteria. Adv. Microbial. Physiol. 40, 281–351 (1998).
doi: 10.1016/S0065-2911(08)60134-4
Lundin, D., Poole, A. M., Sjoberg, B. M. & Hogbom, M. Use of structural phylogenetic networks for classification of the ferritin-like superfamily. J. Biol. Chem. 287(24), 20565–20575. https://doi.org/10.1074/jbc.M112.367458 (2012).
doi: 10.1074/jbc.M112.367458
pubmed: 22535960
pmcid: 3370241
Ruvinsky, A. M., Vakser, I. A. & Rivera, M. Local packing modulates diversity of iron pathways and cooperative behavior in eukaryotic and prokaryotic ferritins. J. Chem. Phys. 140(11), 115104. https://doi.org/10.1063/1.4868229 (2014).
doi: 10.1063/1.4868229
pubmed: 24655206
pmcid: 3977777
Rivera, M. Bacterioferritin: Structure, dynamics and protein-protein interactions at play in iron storage and mobilization. Acc. Chem. Res. 50, 331–340. https://doi.org/10.1021/acs.accounts.6b00514 (2017).
doi: 10.1021/acs.accounts.6b00514
pubmed: 28177216
pmcid: 5358871
Rivera, M. Mobilization of iron stored in bacterioferritin, a new target for perturbing iron homeostasis and developing antibacterial and antibiofilm molecules. J. Inorg. Biochem. 247, 112306. https://doi.org/10.1016/j.jinorgbio.2023.112306 (2023).
doi: 10.1016/j.jinorgbio.2023.112306
pubmed: 37451083
Uebe, R. et al. Bacterioferritin of magnetospirillum gryphiswaldense is a heterotetraeicosameric complex composed of functionally distinct subunits but is not involved in magnetite biomineralization. mBio https://doi.org/10.1128/mBio.02795-18 (2019).
doi: 10.1128/mBio.02795-18
pubmed: 31113903
pmcid: 6529640
Bertani, L. E., Huang, J. S., Weir, B. A. & Kirschvink, J. L. Evidence for two types of subunits in the bacterioferritin of Magnetospirillum magnetotacticum. Gene 201(1–2), 31–36. https://doi.org/10.1016/s0378-1119(97)00424-1 (1997).
doi: 10.1016/s0378-1119(97)00424-1
pubmed: 9409768
Chen, C. Y. & Morse, S. A. Neisseria gonorrhoeae bacterioferritin: Structural heterogeneity, involvement in iron storage and protection against oxidative stress. Microbiology 145(Pt 10), 2967–2975 (1999).
doi: 10.1099/00221287-145-10-2967
pubmed: 10537219
Weeratunga, S. et al. Structural Studies of Bacterioferritin B (BfrB) from Pseudomonas aeruginosa Suggest a Gating Mechanism for Iron Uptake via the Ferroxidase Center. Biochemistry 49, 1160–1175. https://doi.org/10.1021/bi9015204 (2010).
doi: 10.1021/bi9015204
pubmed: 20067302
Yao, H. et al. Two disctinct ferritin-like molecules in P. aeruginosa: The product of the bfrA gene is a bacterial ferritin (FtnA) not a bacterioferritin (Bfr). Biochemistry 50, 5236–5248. https://doi.org/10.1021/bi2004119 (2011).
doi: 10.1021/bi2004119
pubmed: 21574546
Bradley, J. M. et al. The ferroxidase centre of Escherichia coli bacterioferritin plays a key role in the reductive mobilisation of the mineral iron core. Angew. Chem. Int. Ed. Engl. 63(16), e202401379. https://doi.org/10.1002/anie.202401379 (2024).
doi: 10.1002/anie.202401379
pubmed: 38407997
Eshelman, K. et al. Inhibiting the BfrB: Bfd interaction in pseudomonas aeruginosa causes irreversible iron accumulation in bacterioferritin and iron deficiency in the bacterial Cell. Metallomics 9, 646–659. https://doi.org/10.1039/C7MT00042A (2017).
doi: 10.1039/C7MT00042A
pubmed: 28318006
Bradley, J. M., Le Brun, N. E. & Moore, G. R. Ferritins: Furnishing proteins with iron. J. Biol. Inorg. Chem. 21(1), 13–28. https://doi.org/10.1007/s00775-016-1336-0 (2016).
doi: 10.1007/s00775-016-1336-0
pubmed: 26825805
pmcid: 4771812
Abdul-Tehrani, H. et al. Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient. J. Bacteriol. 181(5), 1415–1428 (1999).
doi: 10.1128/JB.181.5.1415-1428.1999
pubmed: 10049371
pmcid: 93529
Velayudhan, J., Castor, M., Richardson, A., Main-Hester, K. L. & Fang, F. C. The role of ferritins in the physiology of Salmonella enterica sv. Typhimurium: A unique role for ferritin B in iron-sulphur cluster repair and virulence. Mol. Microbiol. 63(5), 1495–507. https://doi.org/10.1111/j.1365-2958.2007.05600.x (2007).
doi: 10.1111/j.1365-2958.2007.05600.x
pubmed: 17302823
Yao, H. et al. Pseudomonas aeruginosa bacterioferritin is assembled from FtnA and BfrB subunits with the relative proportions dependent on the environmental oxygen availability. Biomolecules 12(3), 366. https://doi.org/10.3390/biom12030366 (2022).
doi: 10.3390/biom12030366
pubmed: 35327558
pmcid: 8945002
Yao, H. et al. The structure of the BfrB-Bfd complex reveals protein-protein interactions enabling iron release from bacterioferritin. J. Am. Chem. Soc. 134(32), 13470–13481. https://doi.org/10.1021/ja305180n (2012).
doi: 10.1021/ja305180n
pubmed: 22812654
pmcid: 3428730
Weeratunga, S. et al. Binding of Pseudomonas aeruginosa Apobacterioferritin-associated ferredoxin to bacterioferritin B promotes heme mediation of electron delivery and mobilization of core mineral iron. Biochemistry 48, 7420–7431. https://doi.org/10.1021/bi900561a (2009).
doi: 10.1021/bi900561a
pubmed: 19575528
Wang, Y. et al. Characterization of the bacterioferritin/bacterioferritin associated ferredoxin protein–protein interactions in solution and determination of binding energy hot spots. Biochemistry 54, 6162–6175. https://doi.org/10.1021/acs.biochem.5b00937 (2015).
doi: 10.1021/acs.biochem.5b00937
pubmed: 26368531
Punchi Hewage, A. N. D. et al. Mobilization of iron stored in bacterioferritin is required for metabolic homeostasis in Pseudomonas aeruginosa. Pathogens 9(12), 980. https://doi.org/10.3390/pathogens9120980 (2020).
doi: 10.3390/pathogens9120980
pubmed: 33255203
pmcid: 7760384
Soldano, A., Yao, H., Chandler, J. R. & Rivera, M. Inhibiting iron mobilization from bacterioferritin in Pseudomonas aeruginosa impairs biofilm formation irrespective of environmental iron availability. ACS Infect. Dis. 6, 447–458. https://doi.org/10.1021/acsinfecdis.9b00398 (2020).
doi: 10.1021/acsinfecdis.9b00398
pubmed: 31898890
pmcid: 7076691
Punchi Hewage, A. N. D. et al. Small molecule inhibitors of the BfrB-Bfd interaction decrease Pseudomonas aeruginosa fitness and potentiate fluoroquinolone activity. J. Am. Chem. Soc. 141(20), 8171–8184. https://doi.org/10.1021/jacs.9b00394 (2019).
doi: 10.1021/jacs.9b00394
pubmed: 31038945
pmcid: 6535718
Soldano, A. et al. Small molecule inhibitors of the bacterioferritin (BfrB)-ferredoxin (Bfd) complex kill biofilm-embedded Pseudomonas aeruginosa cells. ACS Infect. Dis. 7(1), 123–140. https://doi.org/10.1021/acsinfecdis.0c00669 (2021).
doi: 10.1021/acsinfecdis.0c00669
pubmed: 33269912
Hempstead, P. D. et al. Comparison of the three-dimensional structures of recombinant human H and horse L ferritins at high resolution. J. Mol. Biol. 268, 424–448 (1997).
doi: 10.1006/jmbi.1997.0970
pubmed: 9159481
Trikha, J., Theil, E. C. & Allewell, N. M. High resolution crystal structures of amphibian red cell L ferritin: Potential roles for structural plasticity and solvation in function. J. Mol. Biol. 248, 949–967 (1995).
doi: 10.1006/jmbi.1995.0274
pubmed: 7760335
Wang, A. et al. Biochemical and structural characterization of Pseudomonas aeruginosa Bfd and FPR: Ferredoxin NADP
doi: 10.1021/bi7013135
pubmed: 17915950
Wijerathne, H. et al. Bfd, a new class of [2Fe–2S] protein that functions in bacterial iron homeostasis, requires a structural anion binding site. Biochemistry 57, 5533–5543. https://doi.org/10.1021/acs.biochem.8b00823 (2018).
doi: 10.1021/acs.biochem.8b00823
pubmed: 30183257
Yariv, J. et al. The composition and structure of bacterioferritin of Escherichia coli. Biochem. J. 197, 171–175 (1981).
doi: 10.1042/bj1970171
pubmed: 7032515
pmcid: 1163067
Mohanty, A. et al. Alteration of coaxial heme ligands reveals the role of heme in bacterioferritin from Mycobacterium tuberculosis. Inorg. Chem. 60(22), 16937–16952. https://doi.org/10.1021/acs.inorgchem.1c01554 (2021).
doi: 10.1021/acs.inorgchem.1c01554
pubmed: 34695354
Hamburger, A. E., West, A. P. Jr., Hamburger, Z. A., Hamburger, P. & Bjorkman, P. J. Crystal structure of a secreted insect ferritin reveals a symmetrical arrangement of heavy and light chains. J. Mol. Biol. 349(3), 558–569. https://doi.org/10.1016/j.jmb.2005.03.074 (2005).
doi: 10.1016/j.jmb.2005.03.074
pubmed: 15896348
Robinson, G. C. et al. Crystal structure of the pseudoenzyme PDX1.2 in complex with its cognate enzyme PDX1.3: A total eclipse. Acta Crystallogr. D Struct. Biol. 75(Pt 4), 400–415. https://doi.org/10.1107/S2059798319002912 (2019).
doi: 10.1107/S2059798319002912
pubmed: 30988257
Yao, H. et al. Concerted motions networking pores and distant ferroxidase centers enable bacterioferritin function and iron traffic. Biochemistry 54(8), 1611–1627. https://doi.org/10.1021/bi501255r (2015).
doi: 10.1021/bi501255r
pubmed: 25640193
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature https://doi.org/10.1038/s41586-024-07487-w (2024).
doi: 10.1038/s41586-024-07487-w
pubmed: 38718835
pmcid: 11168924
P. AROSIO and S. LEVI: Structural and Functional Aspects. Molecular and cellular iron transport, 145 (2002)
British Medical Association. Br. Med. J. 2(1197), 1113–1123 (1883).
doi: 10.1136/bmj.2.1197.1113
Pereira, J. H., McAndrew, R. P., Tomaleri, G. P. & Adams, P. D. Berkeley Screen: A set of 96 solutions for general macromolecular crystallization. J. Appl. Crystallogr. 50(Pt 5), 1352–1358. https://doi.org/10.1107/S1600576717011347 (2017).
doi: 10.1107/S1600576717011347
pubmed: 29021733
pmcid: 5627680
Kabsch, W. Automatic indexing of rotation diffraction patterns. J. Appl. Cryst. 21, 67–72. https://doi.org/10.1107/S002188988700937 (1988).
doi: 10.1107/S002188988700937
Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66(Pt 2), 125–132. https://doi.org/10.1107/S0907444909047337 (2010).
doi: 10.1107/S0907444909047337
pubmed: 20124692
pmcid: 2815665
Evans, P. R. An introduction to data reduction: Space-group determination, scaling and intentisy statistics. Acta Cryst. D67, 282–292. https://doi.org/10.1107/S090744491003982X (2011).
doi: 10.1107/S090744491003982X
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674. https://doi.org/10.1107/S0021889807021206 (2007).
doi: 10.1107/S0021889807021206
Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68(4), 352–67. https://doi.org/10.1107/S0907444912001308 (2012).
doi: 10.1107/S0907444912001308
pubmed: 22505256
pmcid: 3322595
Emsley, P., Lohkamp, B., Scott, W. G. & Cowan, K. Features and development of coot. Acta Cryst. D66, 486–501. https://doi.org/10.1107/S0907444910007493 (2010).
doi: 10.1107/S0907444910007493
Potterton, L. et al. Developments in the CCP4 molecular-graphics project. Acta Crystallogr. D Biol. Crystallogr. 60, 2288–2294 (2004).
doi: 10.1107/S0907444904023716
pubmed: 15572783
Potterton, L. et al. Developments in the CCP4 molecular-graphics project. Acta Crystallogr. D Biol. Crystallogr. 60(Pt 12 Pt 1), 2288–2294 (2004).
doi: 10.1107/S0907444904023716
pubmed: 15572783
Krissinel, E. Enhanced fold recognition using efficient short fragment clustering. J. Mol. Biochem. 1(2), 76–85 (2012).
pubmed: 27882309
pmcid: 5117261
Smith, M. G. et al. New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev. 21(5), 601–614. https://doi.org/10.1101/gad.1510307 (2007).
doi: 10.1101/gad.1510307
pubmed: 17344419
pmcid: 1820901
Ringeling, P. L. et al. Iron metabolism in Rhodobacter capsulatus. Characterisation of bacterioferritin and formation of non-haem iron particles in intact cells. Eur. J. Biochem. 223(3), 847–55 (1994).
doi: 10.1111/j.1432-1033.1994.tb19061.x
pubmed: 8055962