The crystal structure of Acinetobacter baumannii bacterioferritin reveals a heteropolymer of bacterioferritin and ferritin subunits.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
06 Aug 2024
Historique:
received: 29 05 2024
accepted: 01 08 2024
medline: 7 8 2024
pubmed: 7 8 2024
entrez: 6 8 2024
Statut: epublish

Résumé

Iron storage proteins, e.g., vertebrate ferritin, and the ferritin-like bacterioferritin (Bfr) and bacterial ferritin (Ftn), are spherical, hollow proteins that catalyze the oxidation of Fe

Identifiants

pubmed: 39107474
doi: 10.1038/s41598-024-69156-2
pii: 10.1038/s41598-024-69156-2
doi:

Substances chimiques

bacterioferritin 9035-38-5
Ferritins 9007-73-2
Cytochrome b Group 0
Bacterial Proteins 0
Iron E1UOL152H7
Protein Subunits 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

18242

Subventions

Organisme : NIH HHS
ID : AI169344
Pays : United States
Organisme : NIH HHS
ID : AI169344
Pays : United States
Organisme : NIH HHS
ID : AI169344
Pays : United States

Informations de copyright

© 2024. The Author(s).

Références

Andrews, S. C. Iron storage in bacteria. Adv. Microbial. Physiol. 40, 281–351 (1998).
doi: 10.1016/S0065-2911(08)60134-4
Lundin, D., Poole, A. M., Sjoberg, B. M. & Hogbom, M. Use of structural phylogenetic networks for classification of the ferritin-like superfamily. J. Biol. Chem. 287(24), 20565–20575. https://doi.org/10.1074/jbc.M112.367458 (2012).
doi: 10.1074/jbc.M112.367458 pubmed: 22535960 pmcid: 3370241
Ruvinsky, A. M., Vakser, I. A. & Rivera, M. Local packing modulates diversity of iron pathways and cooperative behavior in eukaryotic and prokaryotic ferritins. J. Chem. Phys. 140(11), 115104. https://doi.org/10.1063/1.4868229 (2014).
doi: 10.1063/1.4868229 pubmed: 24655206 pmcid: 3977777
Rivera, M. Bacterioferritin: Structure, dynamics and protein-protein interactions at play in iron storage and mobilization. Acc. Chem. Res. 50, 331–340. https://doi.org/10.1021/acs.accounts.6b00514 (2017).
doi: 10.1021/acs.accounts.6b00514 pubmed: 28177216 pmcid: 5358871
Rivera, M. Mobilization of iron stored in bacterioferritin, a new target for perturbing iron homeostasis and developing antibacterial and antibiofilm molecules. J. Inorg. Biochem. 247, 112306. https://doi.org/10.1016/j.jinorgbio.2023.112306 (2023).
doi: 10.1016/j.jinorgbio.2023.112306 pubmed: 37451083
Uebe, R. et al. Bacterioferritin of magnetospirillum gryphiswaldense is a heterotetraeicosameric complex composed of functionally distinct subunits but is not involved in magnetite biomineralization. mBio https://doi.org/10.1128/mBio.02795-18 (2019).
doi: 10.1128/mBio.02795-18 pubmed: 31113903 pmcid: 6529640
Bertani, L. E., Huang, J. S., Weir, B. A. & Kirschvink, J. L. Evidence for two types of subunits in the bacterioferritin of Magnetospirillum magnetotacticum. Gene 201(1–2), 31–36. https://doi.org/10.1016/s0378-1119(97)00424-1 (1997).
doi: 10.1016/s0378-1119(97)00424-1 pubmed: 9409768
Chen, C. Y. & Morse, S. A. Neisseria gonorrhoeae bacterioferritin: Structural heterogeneity, involvement in iron storage and protection against oxidative stress. Microbiology 145(Pt 10), 2967–2975 (1999).
doi: 10.1099/00221287-145-10-2967 pubmed: 10537219
Weeratunga, S. et al. Structural Studies of Bacterioferritin B (BfrB) from Pseudomonas aeruginosa Suggest a Gating Mechanism for Iron Uptake via the Ferroxidase Center. Biochemistry 49, 1160–1175. https://doi.org/10.1021/bi9015204 (2010).
doi: 10.1021/bi9015204 pubmed: 20067302
Yao, H. et al. Two disctinct ferritin-like molecules in P. aeruginosa: The product of the bfrA gene is a bacterial ferritin (FtnA) not a bacterioferritin (Bfr). Biochemistry 50, 5236–5248. https://doi.org/10.1021/bi2004119 (2011).
doi: 10.1021/bi2004119 pubmed: 21574546
Bradley, J. M. et al. The ferroxidase centre of Escherichia coli bacterioferritin plays a key role in the reductive mobilisation of the mineral iron core. Angew. Chem. Int. Ed. Engl. 63(16), e202401379. https://doi.org/10.1002/anie.202401379 (2024).
doi: 10.1002/anie.202401379 pubmed: 38407997
Eshelman, K. et al. Inhibiting the BfrB: Bfd interaction in pseudomonas aeruginosa causes irreversible iron accumulation in bacterioferritin and iron deficiency in the bacterial Cell. Metallomics 9, 646–659. https://doi.org/10.1039/C7MT00042A (2017).
doi: 10.1039/C7MT00042A pubmed: 28318006
Bradley, J. M., Le Brun, N. E. & Moore, G. R. Ferritins: Furnishing proteins with iron. J. Biol. Inorg. Chem. 21(1), 13–28. https://doi.org/10.1007/s00775-016-1336-0 (2016).
doi: 10.1007/s00775-016-1336-0 pubmed: 26825805 pmcid: 4771812
Abdul-Tehrani, H. et al. Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient. J. Bacteriol. 181(5), 1415–1428 (1999).
doi: 10.1128/JB.181.5.1415-1428.1999 pubmed: 10049371 pmcid: 93529
Velayudhan, J., Castor, M., Richardson, A., Main-Hester, K. L. & Fang, F. C. The role of ferritins in the physiology of Salmonella enterica sv. Typhimurium: A unique role for ferritin B in iron-sulphur cluster repair and virulence. Mol. Microbiol. 63(5), 1495–507. https://doi.org/10.1111/j.1365-2958.2007.05600.x (2007).
doi: 10.1111/j.1365-2958.2007.05600.x pubmed: 17302823
Yao, H. et al. Pseudomonas aeruginosa bacterioferritin is assembled from FtnA and BfrB subunits with the relative proportions dependent on the environmental oxygen availability. Biomolecules 12(3), 366. https://doi.org/10.3390/biom12030366 (2022).
doi: 10.3390/biom12030366 pubmed: 35327558 pmcid: 8945002
Yao, H. et al. The structure of the BfrB-Bfd complex reveals protein-protein interactions enabling iron release from bacterioferritin. J. Am. Chem. Soc. 134(32), 13470–13481. https://doi.org/10.1021/ja305180n (2012).
doi: 10.1021/ja305180n pubmed: 22812654 pmcid: 3428730
Weeratunga, S. et al. Binding of Pseudomonas aeruginosa Apobacterioferritin-associated ferredoxin to bacterioferritin B promotes heme mediation of electron delivery and mobilization of core mineral iron. Biochemistry 48, 7420–7431. https://doi.org/10.1021/bi900561a (2009).
doi: 10.1021/bi900561a pubmed: 19575528
Wang, Y. et al. Characterization of the bacterioferritin/bacterioferritin associated ferredoxin protein–protein interactions in solution and determination of binding energy hot spots. Biochemistry 54, 6162–6175. https://doi.org/10.1021/acs.biochem.5b00937 (2015).
doi: 10.1021/acs.biochem.5b00937 pubmed: 26368531
Punchi Hewage, A. N. D. et al. Mobilization of iron stored in bacterioferritin is required for metabolic homeostasis in Pseudomonas aeruginosa. Pathogens 9(12), 980. https://doi.org/10.3390/pathogens9120980 (2020).
doi: 10.3390/pathogens9120980 pubmed: 33255203 pmcid: 7760384
Soldano, A., Yao, H., Chandler, J. R. & Rivera, M. Inhibiting iron mobilization from bacterioferritin in Pseudomonas aeruginosa impairs biofilm formation irrespective of environmental iron availability. ACS Infect. Dis. 6, 447–458. https://doi.org/10.1021/acsinfecdis.9b00398 (2020).
doi: 10.1021/acsinfecdis.9b00398 pubmed: 31898890 pmcid: 7076691
Punchi Hewage, A. N. D. et al. Small molecule inhibitors of the BfrB-Bfd interaction decrease Pseudomonas aeruginosa fitness and potentiate fluoroquinolone activity. J. Am. Chem. Soc. 141(20), 8171–8184. https://doi.org/10.1021/jacs.9b00394 (2019).
doi: 10.1021/jacs.9b00394 pubmed: 31038945 pmcid: 6535718
Soldano, A. et al. Small molecule inhibitors of the bacterioferritin (BfrB)-ferredoxin (Bfd) complex kill biofilm-embedded Pseudomonas aeruginosa cells. ACS Infect. Dis. 7(1), 123–140. https://doi.org/10.1021/acsinfecdis.0c00669 (2021).
doi: 10.1021/acsinfecdis.0c00669 pubmed: 33269912
Hempstead, P. D. et al. Comparison of the three-dimensional structures of recombinant human H and horse L ferritins at high resolution. J. Mol. Biol. 268, 424–448 (1997).
doi: 10.1006/jmbi.1997.0970 pubmed: 9159481
Trikha, J., Theil, E. C. & Allewell, N. M. High resolution crystal structures of amphibian red cell L ferritin: Potential roles for structural plasticity and solvation in function. J. Mol. Biol. 248, 949–967 (1995).
doi: 10.1006/jmbi.1995.0274 pubmed: 7760335
Wang, A. et al. Biochemical and structural characterization of Pseudomonas aeruginosa Bfd and FPR: Ferredoxin NADP
doi: 10.1021/bi7013135 pubmed: 17915950
Wijerathne, H. et al. Bfd, a new class of [2Fe–2S] protein that functions in bacterial iron homeostasis, requires a structural anion binding site. Biochemistry 57, 5533–5543. https://doi.org/10.1021/acs.biochem.8b00823 (2018).
doi: 10.1021/acs.biochem.8b00823 pubmed: 30183257
Yariv, J. et al. The composition and structure of bacterioferritin of Escherichia coli. Biochem. J. 197, 171–175 (1981).
doi: 10.1042/bj1970171 pubmed: 7032515 pmcid: 1163067
Mohanty, A. et al. Alteration of coaxial heme ligands reveals the role of heme in bacterioferritin from Mycobacterium tuberculosis. Inorg. Chem. 60(22), 16937–16952. https://doi.org/10.1021/acs.inorgchem.1c01554 (2021).
doi: 10.1021/acs.inorgchem.1c01554 pubmed: 34695354
Hamburger, A. E., West, A. P. Jr., Hamburger, Z. A., Hamburger, P. & Bjorkman, P. J. Crystal structure of a secreted insect ferritin reveals a symmetrical arrangement of heavy and light chains. J. Mol. Biol. 349(3), 558–569. https://doi.org/10.1016/j.jmb.2005.03.074 (2005).
doi: 10.1016/j.jmb.2005.03.074 pubmed: 15896348
Robinson, G. C. et al. Crystal structure of the pseudoenzyme PDX1.2 in complex with its cognate enzyme PDX1.3: A total eclipse. Acta Crystallogr. D Struct. Biol. 75(Pt 4), 400–415. https://doi.org/10.1107/S2059798319002912 (2019).
doi: 10.1107/S2059798319002912 pubmed: 30988257
Yao, H. et al. Concerted motions networking pores and distant ferroxidase centers enable bacterioferritin function and iron traffic. Biochemistry 54(8), 1611–1627. https://doi.org/10.1021/bi501255r (2015).
doi: 10.1021/bi501255r pubmed: 25640193
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature https://doi.org/10.1038/s41586-024-07487-w (2024).
doi: 10.1038/s41586-024-07487-w pubmed: 38718835 pmcid: 11168924
P. AROSIO and S. LEVI: Structural and Functional Aspects. Molecular and cellular iron transport, 145 (2002)
British Medical Association. Br. Med. J. 2(1197), 1113–1123 (1883).
doi: 10.1136/bmj.2.1197.1113
Pereira, J. H., McAndrew, R. P., Tomaleri, G. P. & Adams, P. D. Berkeley Screen: A set of 96 solutions for general macromolecular crystallization. J. Appl. Crystallogr. 50(Pt 5), 1352–1358. https://doi.org/10.1107/S1600576717011347 (2017).
doi: 10.1107/S1600576717011347 pubmed: 29021733 pmcid: 5627680
Kabsch, W. Automatic indexing of rotation diffraction patterns. J. Appl. Cryst. 21, 67–72. https://doi.org/10.1107/S002188988700937 (1988).
doi: 10.1107/S002188988700937
Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66(Pt 2), 125–132. https://doi.org/10.1107/S0907444909047337 (2010).
doi: 10.1107/S0907444909047337 pubmed: 20124692 pmcid: 2815665
Evans, P. R. An introduction to data reduction: Space-group determination, scaling and intentisy statistics. Acta Cryst. D67, 282–292. https://doi.org/10.1107/S090744491003982X (2011).
doi: 10.1107/S090744491003982X
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674. https://doi.org/10.1107/S0021889807021206 (2007).
doi: 10.1107/S0021889807021206
Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68(4), 352–67. https://doi.org/10.1107/S0907444912001308 (2012).
doi: 10.1107/S0907444912001308 pubmed: 22505256 pmcid: 3322595
Emsley, P., Lohkamp, B., Scott, W. G. & Cowan, K. Features and development of coot. Acta Cryst. D66, 486–501. https://doi.org/10.1107/S0907444910007493 (2010).
doi: 10.1107/S0907444910007493
Potterton, L. et al. Developments in the CCP4 molecular-graphics project. Acta Crystallogr. D Biol. Crystallogr. 60, 2288–2294 (2004).
doi: 10.1107/S0907444904023716 pubmed: 15572783
Potterton, L. et al. Developments in the CCP4 molecular-graphics project. Acta Crystallogr. D Biol. Crystallogr. 60(Pt 12 Pt 1), 2288–2294 (2004).
doi: 10.1107/S0907444904023716 pubmed: 15572783
Krissinel, E. Enhanced fold recognition using efficient short fragment clustering. J. Mol. Biochem. 1(2), 76–85 (2012).
pubmed: 27882309 pmcid: 5117261
Smith, M. G. et al. New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev. 21(5), 601–614. https://doi.org/10.1101/gad.1510307 (2007).
doi: 10.1101/gad.1510307 pubmed: 17344419 pmcid: 1820901
Ringeling, P. L. et al. Iron metabolism in Rhodobacter capsulatus. Characterisation of bacterioferritin and formation of non-haem iron particles in intact cells. Eur. J. Biochem. 223(3), 847–55 (1994).
doi: 10.1111/j.1432-1033.1994.tb19061.x pubmed: 8055962

Auteurs

Huili Yao (H)

Department of Chemistry, Louisiana State University, Baton Rouge, 70803, USA.

Suliat Alli (S)

Department of Chemistry, Louisiana State University, Baton Rouge, 70803, USA.

Lijun Liu (L)

Protein Structure and X-Ray Crystallography Laboratory, University of Kansas, Lawrence, 66047, USA.

Anabel Soldano (A)

Department of Chemistry, Louisiana State University, Baton Rouge, 70803, USA.

Anne Cooper (A)

Protein Structure and X-Ray Crystallography Laboratory, University of Kansas, Lawrence, 66047, USA.

Leo Fontenot (L)

Department of Chemistry, Louisiana State University, Baton Rouge, 70803, USA.

Dristen Verdin (D)

Department of Chemistry, Louisiana State University, Baton Rouge, 70803, USA.

Kevin P Battaile (KP)

NYX, New York Structural Biology Center, Upton, 10027, USA.

Scott Lovell (S)

Protein Structure and X-Ray Crystallography Laboratory, University of Kansas, Lawrence, 66047, USA. swlovell@ku.edu.

Mario Rivera (M)

Department of Chemistry, Louisiana State University, Baton Rouge, 70803, USA. mrivera@lsu.edu.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
alpha-Synuclein Humans Animals Mice Lewy Body Disease

A molecular mechanism for bright color variation in parrots.

Roberto Arbore, Soraia Barbosa, Jindich Brejcha et al.
1.00
Animals Feathers Pigmentation Parrots Aldehyde Dehydrogenase

Classifications MeSH