The Ruminant Telomere-to-Telomere (RT2T) Consortium.
Journal
Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904
Informations de publication
Date de publication:
05 Aug 2024
05 Aug 2024
Historique:
received:
05
12
2023
accepted:
14
06
2024
medline:
6
8
2024
pubmed:
6
8
2024
entrez:
5
8
2024
Statut:
aheadofprint
Résumé
Telomere-to-telomere (T2T) assemblies reveal new insights into the structure and function of the previously 'invisible' parts of the genome and allow comparative analyses of complete genomes across entire clades. We present here an open collaborative effort, termed the 'Ruminant T2T Consortium' (RT2T), that aims to generate complete diploid assemblies for numerous species of the Artiodactyla suborder Ruminantia to examine chromosomal evolution in the context of natural selection and domestication of species used as livestock.
Identifiants
pubmed: 39103649
doi: 10.1038/s41588-024-01835-2
pii: 10.1038/s41588-024-01835-2
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : United States Department of Agriculture | Agricultural Research Service (USDA Agricultural Research Service)
ID : Grant Number 2023-67015-39000
Informations de copyright
© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Références
Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).
pubmed: 35357919
pmcid: 9186530
doi: 10.1126/science.abj6987
Gershman, A. et al. Epigenetic patterns in a complete human genome. Science 376, eabj5089 (2022).
pubmed: 35357915
pmcid: 9170183
doi: 10.1126/science.abj5089
Altemose, N. et al. Complete genomic and epigenetic maps of human centromeres. Science 376, eabl4178 (2022).
pubmed: 35357911
pmcid: 9233505
doi: 10.1126/science.abl4178
Hoyt, S. J. et al. From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. Science 376, eabk3112 (2022).
pubmed: 35357925
pmcid: 9301658
doi: 10.1126/science.abk3112
Aganezov, S. et al. A complete reference genome improves analysis of human genetic variation. Science 376, eabl3533 (2022).
pubmed: 35357935
pmcid: 9336181
doi: 10.1126/science.abl3533
Vollger, M. R. et al. Segmental duplications and their variation in a complete human genome. Science 376, eabj6965 (2022).
pubmed: 35357917
pmcid: 8979283
doi: 10.1126/science.abj6965
Chen, J. et al. A complete telomere-to-telomere assembly of the maize genome. Nat. Genet. 55, 1221–1231 (2023).
pubmed: 37322109
pmcid: 10335936
doi: 10.1038/s41588-023-01419-6
Zhang, C. et al. The T2T genome assembly of soybean cultivar ZH13 and its epigenetic landscapes. Mol. Plant 16, 1715–1718 (2023).
pubmed: 37803825
doi: 10.1016/j.molp.2023.10.003
Deng, Y. et al. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. Mol. Plant 15, 1268–1284 (2022).
pubmed: 35746868
doi: 10.1016/j.molp.2022.06.010
Nakandala, U. et al. Haplotype resolved chromosome level genome assembly of Citrus australis reveals disease resistance and other citrus specific genes. Hortic. Res. 10, uhad058 (2023).
pubmed: 37213680
pmcid: 10199705
doi: 10.1093/hr/uhad058
Li, G. et al. The haplotype-resolved T2T reference genome highlights structural variation underlying agronomic traits of melon. Hortic. Res. 10, uhad182 (2023).
pubmed: 37885818
pmcid: 10599238
doi: 10.1093/hr/uhad182
Li, B. et al. A gap-free reference genome reveals structural variations associated with flowering time in rapeseed (Brassica napus). Hortic. Res. 10, uhad171 (2023).
pubmed: 37841499
pmcid: 10569240
doi: 10.1093/hr/uhad171
Alberto, F. J. et al. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun. 9, 813 (2018).
pubmed: 29511174
pmcid: 5840369
doi: 10.1038/s41467-018-03206-y
Hackmann, T. J. & Spain, J. N. Invited review: ruminant ecology and evolution: perspectives useful to ruminant livestock research and production. J. Dairy Sci. 93, 1320–1334 (2010).
pubmed: 20338409
doi: 10.3168/jds.2009-2071
Minervino, A. H. H., Zava, M., Vecchio, D. & Borghese, A. Bubalus bubalis: a short story. Front. Vet. Sci. 7, 570413 (2020).
pubmed: 33335917
pmcid: 7736047
doi: 10.3389/fvets.2020.570413
Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data 5, 180227 (2018).
Graphodatsky, A., Perelman, P. & Obrien, S. J. in Atlas of Mammalian Chromosomes 706–857 (John Wiley & Sons, 2020).
Chen, L. et al. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science 364, eaav6202 (2019).
pubmed: 31221828
doi: 10.1126/science.aav6202
Ker, D. F. E. & Yang, Y. P. Ruminants: evolutionary past and future impact. Science 364, 1130–1131 (2019).
pubmed: 31221843
doi: 10.1126/science.aax5182
Wang, Y. et al. Genetic basis of ruminant headgear and rapid antler regeneration. Science 364, eaav6335 (2019).
pubmed: 31221830
doi: 10.1126/science.aav6335
Lin, Z. et al. Biological adaptations in the Arctic cervid, the reindeer (Rangifer tarandus). Science 364, eaav6312 (2019).
pubmed: 31221829
doi: 10.1126/science.aav6312
Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).
pubmed: 33911273
pmcid: 8081667
doi: 10.1038/s41586-021-03451-0
Qiu, Q. et al. The yak genome and adaptation to life at high altitude. Nat. Genet. 44, 946–949 (2012).
pubmed: 22751099
doi: 10.1038/ng.2343
Rice, E. S. et al. Continuous chromosome-scale haplotypes assembled from a single interspecies F1 hybrid of yak and cattle. Gigascience 9, giaa029 (2020).
pubmed: 32242610
pmcid: 7118895
doi: 10.1093/gigascience/giaa029
Lejeune, J. et al. A proposed standard system of nomenclature of human mitotic chromosomes. Lancet 275, 1063–1065 (1960).
Cribiu, E. P. et al. International system for chromosome nomenclature of domestic bovids (ISCNDB 2000). Cytogenet. Cell Genet. 92, 283–299 (2001).
pubmed: 11435702
doi: 10.1159/000056917
Brown, J. D. & O’Neill, R. J. Chromosomes, conflict, and epigenetics: chromosomal speciation revisited. Annu. Rev. Genomics Hum. Genet. 11, 291–316 (2010).
Potter, S. et al. Chromosomal speciation in the genomics era: disentangling phylogenetic evolution of rock-wallabies. Front. Genet. 8, 10 (2017).
pubmed: 28265284
pmcid: 5301020
doi: 10.3389/fgene.2017.00010
Wurster, D. H. & Benirschke, K. Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number. Science 168, 1364–1366 (1970).
pubmed: 5444269
doi: 10.1126/science.168.3937.1364
Vujosevic, M., Rajicic, M. & Blagojevic, J. B chromosomes in populations of mammals revisited. Genes 9, 487 (2018).
pubmed: 30304868
pmcid: 6210394
doi: 10.3390/genes9100487
Bovine HapMap, C. et al. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science 324, 528–532 (2009).
doi: 10.1126/science.1167936
Rexroad, C. et al. Genome to phenome: improving animal health, production, and well-being — a new USDA blueprint for animal genome research 2018–2027. Front. Genet. 10, 327 (2019).
pubmed: 31156693
pmcid: 6532451
doi: 10.3389/fgene.2019.00327
Kalbfleisch, T. S. et al. A SNP resource for studying North American moose. F1000Res. 7, 40 (2018).
pubmed: 29479424
pmcid: 5801567
doi: 10.12688/f1000research.13501.1
Cherry, S. G., Merkle, J. A., Sigaud, M., Fortin, D. & Wilson, G. A. Managing genetic diversity and extinction risk for a rare plains bison (Bison bison bison) population. Environ. Manage. 64, 553–563 (2019).
pubmed: 31578626
doi: 10.1007/s00267-019-01206-2
Theissinger, K. et al. How genomics can help biodiversity conservation. Trends Genet. 39, 545–559 (2023).
pubmed: 36801111
doi: 10.1016/j.tig.2023.01.005
Paez, S. et al. Reference genomes for conservation. Science 377, 364–366 (2022).
pubmed: 35862547
doi: 10.1126/science.abm8127
Makova, K. D. et al. The complete sequence and comparative analysis of ape sex chromosomes. Nature 630, 401–411 (2024).
pubmed: 38811727
pmcid: 11168930
doi: 10.1038/s41586-024-07473-2
Rautiainen, M. et al. Telomere-to-telomere assembly of diploid chromosomes with Verkko. Nat. Biotechnol. 41, 1474–1482 (2023).
pubmed: 36797493
pmcid: 10427740
doi: 10.1038/s41587-023-01662-6
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).
pubmed: 33526886
pmcid: 7961889
doi: 10.1038/s41592-020-01056-5
Corbo, M., Damas, J., Bursell, M. G. & Lewin, H. A. Conservation of chromatin conformation in carnivores. Proc. Natl Acad. Sci. USA 119, e2120555119 (2022).
pubmed: 35217621
pmcid: 8892538
doi: 10.1073/pnas.2120555119
Foissac, S. et al. Multi-species annotation of transcriptome and chromatin structure in domesticated animals. BMC Biol. 17, 108 (2019).
pubmed: 31884969
pmcid: 6936065
doi: 10.1186/s12915-019-0726-5
Spielmann, M., Lupianez, D. G. & Mundlos, S. Structural variation in the 3D genome. Nat. Rev. Genet. 19, 453–467 (2018).
pubmed: 29692413
doi: 10.1038/s41576-018-0007-0
Shanta, O., Noor, A., Human Genome Structural Variation Consortium & Sebat, J. The effects of common structural variants on 3D chromatin structure. BMC Genomics 21, 95 (2020).
Anania, C. & Lupianez, D. G. Order and disorder: abnormal 3D chromatin organization in human disease. Brief. Funct. Genomics 19, 128–138 (2020).
doi: 10.1093/bfgp/elz028
Liao, Y., Zhang, X., Chakraborty, M. & Emerson, J. J. Topologically associating domains and their role in the evolution of genome structure and function in Drosophila. Genome Res. 31, 397–410 (2021).
pubmed: 33563719
pmcid: 7919452
doi: 10.1101/gr.266130.120
Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023).
pubmed: 36596869
pmcid: 10213152
doi: 10.1038/s41580-022-00566-8
Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).
pubmed: 6300689
doi: 10.1038/302575a0
Safonova, Y. et al. Variations in antibody repertoires correlate with vaccine responses. Genome Res. 32, 791–804 (2022).
pubmed: 35361626
pmcid: 8997358
doi: 10.1101/gr.276027.121
Sok, D. et al. Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows. Nature 548, 108–111 (2017).
pubmed: 28726771
pmcid: 5812458
doi: 10.1038/nature23301
Clark, T. A. et al. Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res. 40, e29 (2012).
pubmed: 22156058
doi: 10.1093/nar/gkr1146
Lee, W. C. et al. The complete methylome of Helicobacter pylori UM032. BMC Genomics 16, 424 (2015).
Payelleville, A. et al. The complete methylome of an entomopathogenic bacterium reveals the existence of loci with unmethylated adenines. Sci. Rep. 8, 12091 (2018).
pubmed: 30108278
pmcid: 6092372
doi: 10.1038/s41598-018-30620-5
Rand, A. C. et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat. Methods 14, 411–413 (2017).
pubmed: 28218897
pmcid: 5704956
doi: 10.1038/nmeth.4189
Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).
pubmed: 28218898
doi: 10.1038/nmeth.4184
Tvedte, E. S. et al. Comparison of long-read sequencing technologies in interrogating bacteria and fly genomes. G3 11, jkab083 (2017).
doi: 10.1093/g3journal/jkab083
Konstantinidis, I. et al. Major gene expression changes and epigenetic remodelling in Nile tilapia muscle after just one generation of domestication. Epigenetics 15, 1052–1067 (2020).
pubmed: 32264748
pmcid: 7116051
doi: 10.1080/15592294.2020.1748914
Janowitz Koch, I. et al. The concerted impact of domestication and transposon insertions on methylation patterns between dogs and grey wolves. Mol. Ecol. 25, 1838–1855 (2016).
pubmed: 27112634
doi: 10.1111/mec.13480
Hayes, B. J. & Daetwyler, H. D. 1000 Bull Genomes Project to map simple and complex genetic traits in cattle: applications and outcomes. Annu. Rev. Anim. Biosci. 7, 89–102 (2019).
pubmed: 30508490
doi: 10.1146/annurev-animal-020518-115024
Daetwyler, H. D. et al. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat. Genet. 46, 858–865 (2014).
pubmed: 25017103
doi: 10.1038/ng.3034
Nguyen, T. V. et al. In it for the long run: perspectives on exploiting long-read sequencing in livestock for population scale studies of structural variants. Genet. Sel. Evol. 55, 9 (2023).
pubmed: 36721111
pmcid: 9887926
doi: 10.1186/s12711-023-00783-5
Davenport, K. M. et al. An improved ovine reference genome assembly to facilitate in-depth functional annotation of the sheep genome. Gigascience 11, giab096 (2022).
pubmed: 35134925
pmcid: 8848310
doi: 10.1093/gigascience/giab096
Guhlin, J. et al. Species-wide genomics of kākāpō provides tools to accelerate recovery. Nat. Ecol. Evol. 7, 1693–1705 (2023).
pubmed: 37640765
doi: 10.1038/s41559-023-02165-y
Hogg, C. J. et al. Threatened Species Initiative: empowering conservation action using genomic resources. Proc. Natl Acad. Sci. USA 119, e2115643118 (2022).
pubmed: 35042806
pmcid: 8795520
doi: 10.1073/pnas.2115643118
Lewin, H. A. et al. Earth BioGenome Project: sequencing life for the future of life. Proc. Natl Acad. Sci. USA 115, 4325–4333 (2018).
pubmed: 29686065
pmcid: 5924910
doi: 10.1073/pnas.1720115115
Zurano, J. P. et al. Cetartiodactyla: updating a time-calibrated molecular phylogeny. Mol. Phylogenet. Evol. 133, 256–262 (2019).