Senescence detection using reflected light.

SABG X‐gal adipocytes beta‐galactosidase brightfield reflected light senescence western blot

Journal

Aging cell
ISSN: 1474-9726
Titre abrégé: Aging Cell
Pays: England
ID NLM: 101130839

Informations de publication

Date de publication:
05 Aug 2024
Historique:
revised: 10 07 2024
received: 26 02 2024
accepted: 18 07 2024
medline: 6 8 2024
pubmed: 6 8 2024
entrez: 5 8 2024
Statut: aheadofprint

Résumé

Senescence is an important cellular program occurring in development, tissue repair, cancer, and aging. Increased senescence is also associated with disease states, including obesity and Type 2 diabetes (T2D). Characterizing and quantifying senescent cells at a single cell level has been challenging and particularly difficult in large primary cells, such as human adipocytes. In this study, we present a novel approach that utilizes reflected light for accurate senescence-associated beta-galactosidase (SABG) staining measurements, which can be integrated with immunofluorescence and is compatible with primary mature adipocytes from both human and mouse, as well as with differentiated 3T3-L1 cells. This technique provides a more comprehensive classification of a cell's senescent state by incorporating multiple criteria, including robust sample-specific pH controls. By leveraging the precision of confocal microscopy to detect X-gal crystals using reflected light, we achieved superior sensitivity over traditional brightfield techniques. This strategy allows for the capture of all X-gal precipitates in SABG-stained samples, revealing diverse X-gal staining patterns and improved detection sensitivity. Additionally, we demonstrate that reflected light outperforms western blot analysis for the detection and quantification of senescence in mature human adipocytes, as it offers a more accurate representation of SABG activity. This detection strategy enables a more thorough investigation of senescent cell characteristics and specifically a deeper look at the relationship between adipocyte senescence and obesity associated disorders, such as T2D.

Identifiants

pubmed: 39102872
doi: 10.1111/acel.14295
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e14295

Subventions

Organisme : Vetenskapsrådet
ID : 2022-01236
Organisme : Knut och Alice Wallenbergs Stiftelse
ID : 2020.0118
Organisme : Cancerfonden
ID : 22 2420
Organisme : Vallee Foundation
ID : C5471234
Organisme : Karolinska Institutet
ID : C5471162
Organisme : Karolinska Institutet
ID : C5472022
Organisme : Mark Foundation For Cancer Research
ID : C5477023
Organisme : Novo Nordisk Fonden
ID : C5475033
Organisme : Novo Nordisk Fonden
ID : NNF21OC0070149
Organisme : The Erling-Persson Foundation
ID : 140609

Informations de copyright

© 2024 The Author(s). Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.

Références

Acosta, J. C., Banito, A., Wuestefeld, T., Georgilis, A., Janich, P., Morton, J. P., Athineos, D., Kang, T.‐W., Lasitschka, F., Andrulis, M., Pascual, G., Morris, K. J., Khan, S., Jin, H., Dharmalingam, G., Snijders, A. P., Carroll, T., Capper, D., Pritchard, C., … Gil, J. (2013). A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nature Cell Biology, 15(8), 978–990. https://doi.org/10.1038/ncb2784
Aguayo‐Mazzucato, C., Andle, J., Lee, T. B., Midha, A., Talemal, L., Chipashvili, V., HollisterLock, J., van Deursen, J., Weir, G., & Bonner‐Weir, S. (2019). Acceleration of β‐cell aging determines diabetes and senolysis improves disease outcomes. Cell Metabolism, 30(1), 129–142.e4. https://doi.org/10.1016/j.cmet.2019.05.006
Alcorta, D. A., Xiong, Y., Phelps, D., Hannon, G., Beach, D., & Barrett, J. C. (1996). Involvement of the cyclin‐dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13742–13747.
Aravinthan, A., Scarpini, C., Tachtatzis, P., Verma, S., Penrhyn‐Lowe, S., Harvey, R., Davies, S. E., Allison, M., Coleman, N., & Alexander, G. (2013). Hepatocyte senescence predicts progression in non‐alcohol‐related fatty liver disease. Journal of Hepatology, 58(3), 549–556. https://doi.org/10.1016/j.jhep.2012.10.031
Arzt, M., Deschamps, J., Schmied, C., Pietzsch, T., Schmidt, D., Tomancak, P., Haase, R., & Jug, F. (2022). LABKIT: Labeling and segmentation toolkit for big image data. Frontiers in Computer Science, 4, 1–12. https://doi.org/10.3389/fcomp.2022.777728
Baboota, R. K., Rawshani, A., Bonnet, L., Li, X., Yang, H., Mardinoglu, A., Tchkonia, T., Kirkland, J. L., Hoffmann, A., Dietrich, A., Boucher, J., Blüher, M., & Smith, U. (2022). BMP4 and gremlin 1 regulate hepatic cell senescence during clinical progression of NAFLD/NASH. Nature Metabolism, 4(8), 1007–1021. https://doi.org/10.1038/s42255‐022‐00620‐x
Chen, Y.‐W., Harris, R. A., Hatahet, Z., & Chou, K. (2015). Ablation of XP‐V gene causes adipose tissue senescence and metabolic abnormalities. Proceedings of the National Academy of Sciences of the United States of America, 112(33), E4556–E4564. https://doi.org/10.1073/pnas.1506954112
Coppé, J.‐P., Desprez, P.‐Y., Krtolica, A., & Campisi, J. (2010). The senescence‐associated secretory phenotype: The dark side of tumor suppression. Annual Review of Pathology, 5, 99–118. https://doi.org/10.1146/annurev‐pathol‐121808‐102144
de Oliveira, R. F., Salazar, M., Matos, L., Almeida, H., Rodrigues, A. R., & Gouveia, A. M. (2024). High copper levels induce premature senescence in 3T3‐L1 preadipocytes. Biochimica et Biophysica acta (BBA). Molecular Cell Research, 1871(5), 119734. https://doi.org/10.1016/j.bbamcr.2024.119734
Dimri, G. P., Lee, X., Lee, X., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Roskelley, C., Roskelley, C. D., Medrano, E. E., Medrano, E. E., Medrano, E. E., Linskens, M. H. K., Gajski, G., Rubelj, I., Rubelj, I., Pereira‐Smith, O. M., Pereira‐Smith, O. M., … Campisi, J. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences of the United States of America, 92(20), 9363–9367. https://doi.org/10.1073/pnas.92.20.9363
Doura, T., Kamiya, M., Obata, F., Yamaguchi, Y., Hiyama, T. Y., Matsuda, T., Fukamizu, A., Noda, M., Miura, M., & Urano, Y. (2016). Detection of LacZ‐positive cells in living tissue with single‐cell resolution. Angewandte Chemie (International Ed. in English), 55(33), 9620–9624. https://doi.org/10.1002/anie.201603328
Eggert, T., Wolter, K., Ji, J., Ma, C., Yevsa, T., Klotz, S., Medina‐Echeverz, J., Longerich, T., Forgues, M., Reisinger, F., Heikenwalder, M., Wang, X. W., Zender, L., & Greten, T. F. (2016). Distinct functions of senescence‐associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell, 30(4), 533–547. https://doi.org/10.1016/j.ccell.2016.09.003
Feldser, D. M., & Greider, C. W. (2007). Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell, 11(5), 461–469. https://doi.org/10.1016/j.ccr.2007.02.026
Gustafson, B., Nerstedt, A., Spinelli, R., Beguinot, F., & Smith, U. (2022). Type 2 diabetes, independent of obesity and age, is characterized by senescent and dysfunctional mature human adipose cells. Diabetes, 71(11), 2372–2383. https://doi.org/10.2337/db22‐0003
Hagberg, C. E., Li, Q., Kutschke, M., Bhowmick, D., Kiss, E., Shabalina, I. G., Harms, M. J., Shilkova, O., Kozina, V., Nedergaard, J., Boucher, J., Thorell, A., & Spalding, K. L. (2018). Flow cytometry of mouse and human adipocytes for the analysis of Browning and Cellular heterogeneity. Cell Reports, 24(10), 2746–2756.e5. https://doi.org/10.1016/j.celrep.2018.08.006
Hara, E., Smith, R., Parry, D., Tahara, H., Stone, S., & Peters, G. (1996). Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Molecular and Cellular Biology, 16(3), 859–867. https://doi.org/10.1128/MCB.16.3.859
Horwitz, J. P., Chua, J., Curby, R. J., Tomson, A. J., Da Rooge, M. A., Fisher, B. E., Mauricio, J., & Klundt, I. (1964). Substrates for cytochemical demonstration of enzyme activity. I. Some substituted 3‐indolyl‐β‐D‐glycopyranosides1a. Journal of Medicinal Chemistry, 7(4), 574–575. https://doi.org/10.1021/jm00334a044
Hu, L., Dong, C., Wang, Z., He, S., Yang, Y., Zi, M., Li, H., Zhang, Y., Chen, C., Zheng, R., Jia, S., Liu, J., Zhang, X., & He, Y. (2023). A rationally designed fluorescence probe achieves highly specific and long‐term detection of senescence in vitro and in vivo. Aging Cell, 22(8), e13896. https://doi.org/10.1111/acel.13896
Itahana, K., Itahana, Y., & Dimri, G. P. (2013). Colorimetric detection of senescence‐associated β galactosidase. Methods in Molecular Biology (Clifton, N.J.), 965, 143–156. https://doi.org/10.1007/978‐1‐62703‐239‐1_8
Jun, J.‐I., & Lau, L. F. (2010). The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nature Cell Biology, 12(7), 676–685. https://doi.org/10.1038/ncb2070
Kim, S. R., Jiang, K., Ferguson, C. M., Tang, H., Chen, X., Zhu, X., Hickson, L. J., Tchkonia, T., Kirkland, J. L., & Lerman, L. O. (2020). Transplanted senescent renal scattered tubular‐like cells induce injury in the mouse kidney. American Journal of Physiology ‐ Renal Physiology, 318(5), F1167–F1176. https://doi.org/10.1152/ajprenal.00535.2019
Krishnamurthy, J., Ramsey, M. R., Ligon, K. L., Torrice, C., Koh, A., Bonner‐Weir, S., & Sharpless, N. E. (2006). p16INK4a induces an age‐dependent decline in islet regenerative potential. Nature, 443(7110), 7110. https://doi.org/10.1038/nature05092
Krizhanovsky, V., Yon, M., Dickins, R. A., Hearn, S., Simon, J., Miething, C., Yee, H., Zender, L., & Lowe, S. W. (2008). Senescence of activated stellate cells limits liver fibrosis. Cell, 134(4), 657–667. https://doi.org/10.1016/j.cell.2008.06.049
Kurz, D. J., Decary, S., Hong, Y., & Erusalimsky, J. D. (2000). Senescence‐associated βgalactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. Journal of Cell Science, 113(20), 3613–3622. https://doi.org/10.1242/jcs.113.20.3613
Lee, B. Y., Han, J. A., Im, J. S., Morrone, A., Johung, K., Goodwin, E. C., Kleijer, W. J., DiMaio, D., & Hwang, E. S. (2006). Senescence‐associated β‐galactosidase is lysosomal β‐galactosidase. Aging Cell, 5(2), 187–195. https://doi.org/10.1111/j.1474‐9726.2006.00199.x
Lee, H. W., Heo, C. H., Sen, D., Byun, H.‐O., Kwak, I. H., Yoon, G., & Kim, H. M. (2014). Ratiometric two‐photon fluorescent probe for quantitative detection of β‐galactosidase activity in senescent cells. Analytical Chemistry, 86(20), 10001–10005. https://doi.org/10.1021/ac5031013
Levitsky, K. L., Toledo‐Aral, J. J., López‐Barneo, J., & Villadiego, J. (2013). Direct confocal acquisition of fluorescence from X‐gal staining on thick tissue sections. Scientific Reports, 3(1), 2937. https://doi.org/10.1038/srep02937
Li, F., Huangyang, P., Burrows, M., Guo, K., Riscal, R., Godfrey, J., Lee, K. E., Lin, N., Lee, P., Blair, I. A., Keith, B., Li, B., & Simon, M. C. (2020). FBP1 loss disrupts liver metabolism and promotes tumorigenesis through a hepatic stellate cell senescence secretome. Nature Cell Biology, 22(6), 6. https://doi.org/10.1038/s41556‐020‐0511‐2
Li, Q., Hagberg, C. E., Cascales, H. S., Lang, S., Hyvönen, M. T., Salehzadeh, F., Chen, P., Alexandersson, I., Terezaki, E., Harms, M. J., Kutschke, M., Arifen, N., Krämer, N., Aouadi, M., Knibbe, C., Boucher, J., Thorell, A., & Spalding, K. L. (2021). Obesity and hyperinsulinemia drive adipocytes to activate a cell cycle program and senesce. Nature Medicine, 27(11), 1941–1953. https://doi.org/10.1038/s41591‐021‐01501‐8
Lin, A. W., Barradas, M., Stone, J. C., van Aelst, L., Serrano, M., & Lowe, S. W. (1998). Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes & Development, 12(19), 3008–3019.
Matei, V. A., Feng, F., Pauley, S., Beisel, K. W., Nichols, M. G., & Fritzsch, B. (2006). Nearinfrared laser illumination transforms the fluorescence absorbing X‐gal reaction product BCI into a transparent, yet brightly fluorescent substance. Brain Research Bulletin, 70(1), 33–43. https://doi.org/10.1016/j.brainresbull.2005.11.007
Minamino, T., Orimo, M., Shimizu, I., Kunieda, T., Yokoyama, M., Ito, T., Nojima, A., Nabetani, A., Oike, Y., Matsubara, H., Ishikawa, F., & Komuro, I. (2009). A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nature Medicine, 15(9), 9. https://doi.org/10.1038/nm.2014
Muñoz‐Espín, D., Cañamero, M., Maraver, A., Gómez‐López, G., Contreras, J., Murillo‐Cuesta, S., Rodríguez‐Baeza, A., Varela‐Nieto, I., Ruberte, J., Collado, M., & Serrano, M. (2013). Programmed cell senescence during mammalian embryonic development. Cell, 155(5), 1104–1118. https://doi.org/10.1016/j.cell.2013.10.019
Okamoto, A., Demetrick, D. J., Spillare, E. A., Hagiwara, K., Hussain, S. P., Bennett, W. P., Forrester, K., Gerwin, B., Serrano, M., & Beach, D. H. (1994). Mutations and altered expression of p16INK4 in human cancer. Proceedings of the National Academy of Sciences, 91(23), 11045–11049. https://doi.org/10.1073/pnas.91.23.11045
Rovira, M., Sereda, R., Pladevall‐Morera, D., Ramponi, V., Marin, I., Maus, M., MadrigalMatute, J., Díaz, A., García, F., Muñoz, J., Cuervo, A. M., & Serrano, M. (2022). The lysosomal proteome of senescent cells contributes to the senescence secretome. Aging Cell, 21(10), e13707. https://doi.org/10.1111/acel.13707
Serrano, M., Hannon, G. J., & Beach, D. (1993). A new regulatory motif in cell‐cycle control causing specific inhibition of cyclin D/CDK4. Nature, 366(6456), 704–707. https://doi.org/10.1038/366704a0
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., & Lowe, S. W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88(5), 593–602. https://doi.org/10.1016/S0092‐8674(00)81902‐9
Sone, H., & Kagawa, Y. (2005). Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high‐fat diet‐induced diabetic mice. Diabetologia, 48(1), 58–67. https://doi.org/10.1007/s00125‐004‐1605‐2
Storer, M., Mas, A., Robert‐Moreno, A., Pecoraro, M., Ortells, M. C., Di Giacomo, V., Yosef, R., Pilpel, N., Krizhanovsky, V., Sharpe, J., & Keyes, W. M. (2013). Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell, 155(5), 1119–1130. https://doi.org/10.1016/j.cell.2013.10.041
Tan, J. X., & Finkel, T. (2023). Lysosomes in senescence and aging. EMBO Reports, 24(11), e57265. https://doi.org/10.15252/embr.202357265
Wang, E. (1995). Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Research, 55(11), 2284–2292.
Wang, Y., Liu, J., Ma, X., Cui, C., Deenik, P. R., Henderson, P. K. P., Sigler, A. L., & Cui, L. (2019). Real‐time imaging of senescence in tumors with DNA damage. Scientific Reports, 9, 2102. https://doi.org/10.1038/s41598‐019‐38511‐z
Wong, H., & Riabowol, K. (1996). Differential CDK‐inhibitor gene expression in aging human diploid fibroblasts. Experimental Gerontology, 31(1–2), 311–325. https://doi.org/10.1016/0531‐5565(95)00025‐9
Xu, M., Palmer, A. K., Ding, H., Weivoda, M. M., Pirtskhalava, T., White, T. A., Sepe, A., Johnson, K. O., Stout, M. B., Giorgadze, N., Jensen, M. D., LeBrasseur, N. K., Tchkonia, T., & Kirkland, J. L. (2015). Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife, 4, e12997. https://doi.org/10.7554/eLife.12997
Xu, M., Pirtskhalava, T., Farr, J. N., Weigand, B. M., Palmer, A. K., Weivoda, M. M., Inman, C. L., Ogrodnik, M. B., Hachfeld, C. M., Fraser, D. G., Onken, J. L., Johnson, K. O., Verzosa, G. C., Langhi, L. G. P., Weigl, M., Giorgadze, N., LeBrasseur, N. K., Miller, J. D., Jurk, D., … Kirkland, J. L. (2018). Senolytics improve physical function and increase lifespan in old age. Nature Medicine, 24(8), 8. https://doi.org/10.1038/s41591‐018‐0092‐9
Xue, W., Zender, L., Miething, C., Dickins, R. A., Hernando, E., Krizhanovsky, V., CordonCardo, C., & Lowe, S. W. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature, 445(7128), 7128. https://doi.org/10.1038/nature05529
Yosef, R., Pilpel, N., Tokarsky‐Amiel, R., Biran, A., Ovadya, Y., Cohen, S., Vadai, E., Dassa, L., Shahar, E., Condiotti, R., Ben‐Porath, I., & Krizhanovsky, V. (2016). Directed elimination of senescent cells by inhibition of BCL‐W and BCL‐XL. Nature Communications, 7, 11190. https://doi.org/10.1038/ncomms11190
Yoshimoto, S., Loo, T. M., Atarashi, K., Kanda, H., Sato, S., Oyadomari, S., Iwakura, Y., Oshima, K., Morita, H., Hattori, M., Honda, K., Ishikawa, Y., Hara, E., & Ohtani, N. (2013). Obesity‐induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature, 499(7456), 7456. https://doi.org/10.1038/nature12347
Zhao, Y., Sun, S., Lyu, Y., Gao, M., Lin, H., & Yang, C. (2023). A near‐infrared fluorescent nanoprobe for senescence‐associated β‐galactosidase sensing in living cells. Chemical Communications, 59(20), 2974–2977. https://doi.org/10.1039/D2CC05550C
Zoico, E., Rizzatti, V., Policastro, G., Tebon, M., Darra, E., Rossi, A. P., Mazzali, G., Fantin, F., & Zamboni, M. (2019). In vitro model of chronological aging of adipocytes: Interrelationships with hypoxia and oxidation. Experimental Gerontology, 121, 81–90. https://doi.org/10.1016/j.exger.2019.03.011

Auteurs

Benjamin Dedic (B)

Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.

Leo Westerberg (L)

Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.

Andrea Mosqueda Solís (A)

Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.

Kyle D Dumont (KD)

Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

Jorge L Ruas (JL)

Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
Department of Pharmacology and Stanley and Judith Frankel Institute for Heart and Brain Health, University of Michigan Medical School, Ann Arbor, Michigan, USA.

Anders Thorell (A)

Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet and Department of Surgery, Ersta Hospital, Karolinska Institutet, Stockholm, Sweden.

Erik Näslund (E)

Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden.

Kirsty L Spalding (KL)

Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.

Classifications MeSH