Redox-Active Compounds in the Therapy of Drug-Resistant Murine Leukemia P388 Strains.
antioxidant
chemotherapy
drug-resistant tumors
nitric oxide donor
Journal
Bulletin of experimental biology and medicine
ISSN: 1573-8221
Titre abrégé: Bull Exp Biol Med
Pays: United States
ID NLM: 0372557
Informations de publication
Date de publication:
02 Aug 2024
02 Aug 2024
Historique:
received:
09
11
2023
medline:
2
8
2024
pubmed:
2
8
2024
entrez:
2
8
2024
Statut:
aheadofprint
Résumé
The efficiency of combinations of cytostatics cisplatin and adriamycin with antioxidant sodium 3-(3'-tert-butyl-4-hydroxyphenyl)propyl thiosulfate (TS-13), and nitric oxide (NO) donor NaNO
Identifiants
pubmed: 39093476
doi: 10.1007/s10517-024-06170-4
pii: 10.1007/s10517-024-06170-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. Springer Science+Business Media, LLC, part of Springer Nature.
Références
Zhou Y, Hileman EO, Plunkett W, Keating MJ, Huang P. Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Blood. 2003;101(10):4098-4104. https://doi.org/10.1182/blood-2002-08-2512
doi: 10.1182/blood-2002-08-2512
pubmed: 12531810
Liu Y, Li Q, Zhou L, Xie N, Nice EC, Zhang H, Huang C, Lei Y. Cancer drug resistance: redox resetting renders a way. Oncotarget. 2016;7(27):42740-42761. https://doi.org/10.18632/oncotarget.8600
Fan C, Zheng W, Fu X, Li X, Wong YS, Chen T. Strategy to enhance the therapeutic effect of doxorubicin in human hepatocellular carcinoma by selenocystine, a synergistic agent that regulates the ROS-mediated signaling. Oncotarget. 2014;5(9):2853-2863. https://doi.org/10.18632/oncotarget.1854
Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS, Doetsch PW. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One. 2013;8(11):e81162. https://doi.org/10.1371/journal.pone.0081162
doi: 10.1371/journal.pone.0081162
pubmed: 24260552
pmcid: 3834214
Ramanathan B, Jan KY, Chen CH, Hour TC, Yu HJ, Pu YS. Resistance to paclitaxel is proportional to cellular total antioxidant capacity. Cancer Res. 2005;65(18):8455-8460. https://doi.org/10.1158/0008-5472.CAN-05-1162
doi: 10.1158/0008-5472.CAN-05-1162
pubmed: 16166325
Furusawa S, Kimura E, Kisara S, Nakano S, Murata R, Tanaka Y, Sakaguchi S, Takayanagi M, Takayanagi Y, Sasaki K. Mechanism of resistance to oxidative stress in doxorubicin resistant cells. Biol. Pharm. Bull. 2001;24(5):474-479. https://doi.org/10.1248/bpb.24.474
doi: 10.1248/bpb.24.474
pubmed: 11379763
Bahlis NJ, McCafferty-Grad J, Jordan-McMurry I, Neil J, Reis I, Kharfan-Dabaja M, Eckman J, Goodman M, Fernandez HF, Boise LH, Lee KP. Feasibility and correlates of arsenic trioxide combined with ascorbic acid-mediated depletion of intracellular glutathione for the treatment of relapsed/refractory multiple myeloma. Clin. Cancer Res. 2002;8(12):3658-3668.
pubmed: 12473574
Kwee JK, Luque DG, Ferreira AC, Vasconcelos FC, Silva KL, Klumb CE, Maia RC. Modulation of reactive oxygen species by antioxidants in chronic myeloid leukemia cells enhances imatinib sensitivity through survivin downregulation. Anticancer Drugs. 2008;19(10):975-981. https://doi.org/10.1097/CAD.0b013e3283140c6f
doi: 10.1097/CAD.0b013e3283140c6f
pubmed: 18827562
Konovalova NP, Goncharova SA, Volkova LM, Rajewskaya TA, Eremenko LT, Korolev AM. Nitric oxide donor increases the efficiency of cytostatic therapy and retards the development of drug resistance. Nitric Oxide. 2003;8(1):59-64. https://doi.org/10.1016/s1089-8603(02)00142-8
doi: 10.1016/s1089-8603(02)00142-8
pubmed: 12586543
Zenkov NK, Menshchikova EB, Kandalintseva NV, Oleynik AS, Prosenko AE, Gusachenko ON, Shklyaeva OA, Vavilin VA, Lyakhovich VV. Antioxidant and antiinflammatory activity of new water-soluble sulfur-containing phenolic compounds. Biochemistry (Moscow). 2007;72(6):644-651. https://doi.org/10.1134/S0006297907060077
doi: 10.1134/S0006297907060077
pubmed: 17630909
Goncharova SA, Raevskaya TA, Yakushchenko TN, Blokhina SV, Konovalova NP, Sen’ VD. Synergistic antitumor effect of cisplatin and the platinum(IV) nitroxyl complex BC118 and the development of resistance to their combined action. Russ. Chem. Bull. 2011;60:1944-1947. https://doi.org/10.1007/s11172-011-0293-6
Tumor Models in Cancer Research. Teicher BA, ed. Berlin, 2011. https://doi.org/10.1007/978-1-60761-968-0
doi: 10.1007/978-1-60761-968-0
Poletaeva DA, Soldatova YV, Smolina AV, Savushkin MA, Klimanova EN, Sanina NA, Faingold II. The influence of cationic nitrosyl iron complex with penicillamine ligands on model membranes, membrane-bound enzymes and lipid peroxidation. Membranes (Basel). 2022;12(11):1088. https://doi.org/10.3390/membranes12111088
doi: 10.3390/membranes12111088
pubmed: 36363643
pmcid: 9694463
Bogatyrenko TN, Kandalintseva NV, Sashenkova TE, Allayarova UYu, Mishchenko DV. Hydrophilic sulfur-containing antioxidant sodium 3-(3-tert-butyl-4-hydroxyphenyl)propylthiosulfate as a modulator of the activity of antitumor cytostatics and their combinations with a NO donor. Russ. Chem. Bull. 2022;71(3):517-523. https://doi.org/10.1007/s11172-022-3442-1
Balakina AA, Raevskaya TA, Pavlov VS, Mumyatova VA, Goncharova SA, Terent’ev AA. Nrf2-dependent gene expression of glutathione antioxidant system and redox status in cells of in vivo drug-resistant murine P388 leukemia strains. Bull. Exp. Biol. Med. 2020;169(2):249-253. https://doi.org/10.1007/s10517-020-04861-2
Wondrak GT. Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid. Redox Signal. 2009;11(12):3013-3069. https://doi.org/10.1089/ars.2009.2541
doi: 10.1089/ars.2009.2541
pubmed: 19496700
pmcid: 2824519