A Quantitative Adverse Outcome Pathway for Embryonic Activation of the Aryl Hydrocarbon Receptor of Fishes by Polycyclic Aromatic Hydrocarbons Leading to Decreased Fecundity at Adulthood.
Adverse outcome pathway
Aquatic toxicology
Benzo[a]pyrene
Epigenetic
Polycyclic aromatic hydrocarbons (PAHs)
Predictive toxicology
Reproductive toxicity
Zebrafish
Journal
Environmental toxicology and chemistry
ISSN: 1552-8618
Titre abrégé: Environ Toxicol Chem
Pays: United States
ID NLM: 8308958
Informations de publication
Date de publication:
02 Aug 2024
02 Aug 2024
Historique:
revised:
02
04
2024
received:
15
02
2024
accepted:
03
07
2024
medline:
2
8
2024
pubmed:
2
8
2024
entrez:
2
8
2024
Statut:
aheadofprint
Résumé
Quantitative adverse outcome pathways (qAOPs) describe the response-response relationships that link the magnitude and/or duration of chemical interaction with a specific molecular target to the probability and/or severity of the resulting apical-level toxicity of regulatory relevance. The present study developed the first qAOP for latent toxicities showing that early life exposure adversely affects health at adulthood. Specifically, a qAOP for embryonic activation of the aryl hydrocarbon receptor 2 (AHR2) of fishes by polycyclic aromatic hydrocarbons (PAHs) leading to decreased fecundity of females at adulthood was developed by building on existing qAOPs for (1) activation of the AHR leading to early life mortality in birds and fishes, and (2) inhibition of cytochrome P450 aromatase activity leading to decreased fecundity in fishes. Using zebrafish (Danio rerio) as a model species and benzo[a]pyrene as a model PAH, three linked quantitative relationships were developed: (1) plasma estrogen in adult females as a function of embryonic exposure, (2) plasma vitellogenin in adult females as a function of plasma estrogen, and (3) fecundity of adult females as a function of plasma vitellogenin. A fourth quantitative relationship was developed for early life mortality as a function of sensitivity to activation of the AHR2 in a standardized in vitro AHR transactivation assay to integrate toxic equivalence calculations that would allow prediction of effects of exposure to untested PAHs. The accuracy of the predictions from the resulting qAOP were evaluated using experimental data from zebrafish exposed as embryos to another PAH, benzo[k]fluoranthene. The qAOP developed in the present study demonstrates the potential of the AOP framework in enabling consideration of latent toxicities in quantitative ecological risk assessments and regulatory decision-making. Environ Toxicol Chem 2024;00:1-12. © 2024 SETAC.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Natural Sciences and Engineering Research Council of Canada
ID : RGPIN-2017-04474
Informations de copyright
© 2024 SETAC.
Références
Alexeyenko, A., Wassenberg, D. M., Lobenhofer, E. K., Yen, J., Linney, E., Sonnhammer, E. L. L., & Meyer, J. N. (2010). Dynamic zebrafish interactome reveals transcriptional mechanisms of dioxin toxicity. PLoS One, 5(5), e10465.
Aluru, N., Kuo, E., Helfrich, L. W., Karchner, S. I., Linney, E. A., Pais, J. E., & Franks, D. G. (2015). Developmental exposure to 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin alters DNA methyltransferase (DNMT) expression in zebrafish (Danio rerio). Toxicology and Applied Pharmacology, 284, 142–151.
Ankley, G. T., Bennett, R. S., Erickson, R. J., Hoff, D. J., Hornung, M. W., Johnson, R. D., Mount, D. R., Nichols, J. W., Russom, C. L., Schmieder, P. K., Serrano, J. A., Tietge, J. E., & Villeneuve, D. L. (2010). Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environmental Toxicology and Chemistry, 29(3), 730–741. https://doi.org/10.1002/etc.34
Ankley, G. T., Kahl, M. D., Jensen, K. M., Hornung, M. W., Korte, J. J., Makynen, E. A., & Leino, R. L. (2002). Evaluation of the aromatase inhibitor fadrozole in a short‐term reproduction assay with the fathead minnow (Pimephales promelas). Toxicological Sciences, 67, 121–130.
Baker, T. R., King‐Heiden, T. C., Peterson, R. E., & Heideman, W. (2014a). Dioxin induction of transgenerational inheritance of disease in zebrafish. Molecular and Cellular Endocrinology, 398, 36–41.
Baker, T. R., Petersen, R. E., & Heideman, W. (2014b). Using zebrafish as a model system for studying the transgenerational effects of dioxin. Toxicological Sciences, 138(2), 403–411.
Barron, M. G., Carls, M. G., Heintz, R., & Rice, S. D. (2004a). Evaluation of fish early life‐stage toxicity models of chronic embryonic exposures to complex polycyclic aromatic hydrocarbon mixtures. Toxicological Sciences, 78, 60–67.
Barron, M. G., Heintz, R., & Rice, S. D. (2004b). Relative potency of PAHs and heterocycles as aryl hydrocarbon receptor agonists in fish. Marine Environmental Research, 58, 95–100.
Billiard, S. M., Hahn, M. E., Franks, D. G., Peterson, R. E., Bols, N. C., & Hodson, P. V. (2002). Binding of polycyclic aromatic hydrocarbons (PAHs) to teleost aryl hydrocarbon receptors (AHRs). Comparative Biochemistry and Physiology. B: Comparative Biochemistry, 133, 55–68.
Brandenburg, J., & Head, J. A. (2018). Effects of in ovo exposure to benzo[k]fluoranthene (BkF) on CYP1A expression and promotor methylation in developing chicken embryos. Comparative Biochemistry and Physiology. C: Comparative Pharmacology and Toxicology. 204, 88–96.
Brevik, A., Lindeman, B., Rusnakova, V., Olsen, A., Brunborg, G., & Duale, N. (2012). Paternal benzo[a]pyrene exposure affects gene expression in the early developing mouse embryo. Toxicological Sciences, 129(1), 157–165.
Cachot, J., Law, M., Pottier, D., Peluhet, L., Norris, M., Budzinski, H., & Winn, R. (2007). Characterization of toxic effects of sediment‐associated organic pollutants using the lambda transgenic medaka. Environmental Science & Technology, 41, 7830–7836.
Cavalieri, V., & Spinello, G. (2017). Environmental epigenetics in zebrafish. Epigenetics & Chromatin, 10, 46.
Chedin, F. (2011). The DNMT3 family of mammalian de novo DNA methyltransferases. Progress in Molecular Biology and Translational Science, 101, 255–285.
Clark, B. W., Matson, C. W., Jung, D., & Di Giulio, R. T. (2010). AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB‐126 in Atlantic killifish (Fundulus heteroclitus). Aquatic Toxicology, 99, 232–240.
Conolly, R. B., Ankley, G. T., Cheng, W., Mayo, M. L., Miller, D. H., Perkins, E. J., Villeneuve, D. L., & Watanabe, K. H. (2017). Quantitative adverse outcome pathways and their application to predictive toxicology. Environmental Science & Technology, 51, 4661–4671.
Corrales, J., Fang, X., Thornton, C., Mei, W., Barbazuk, W. B., Duke, M., Scheffler, B. E., & Willett, K. L. (2014). Effects on specific promotor DNA methylation in zebrafish embryos and larvae following benzo[a]pyrene exposure. Comparative Biochemistry and Physiology. C: Comparative Pharmacology and Toxicology. 163, 37–46.
Doering, J. A., Dubiel, J., & Wiseman, S. (2020). Predicting early life stage mortality in birds and fishes from exposure to low potency agonists of the aryl hydrocarbon receptor: A cross‐species quantitative adverse outcome pathway approach. Environmental Toxicology and Chemistry, 39(10), 2055–2064.
Doering, J. A., Farmahin, R., Wiseman, S., Kennedy, S., Giesy, J. P., & Hecker, M. (2014). Functionality of aryl hydrocarbon receptors (AhR1 andAhR2) of white sturgeon (Acipenser transmontanus) and implications for the risk assessment of dioxin‐like compounds. Environmental Science & Technology, 48, 8219–8226.
Doering, J. A., Tang, S., Peng, H., Eisner, B. K., Sun, J., Giesy, J. P., Wiseman, S., & Hecker, M. (2016). High conservation in transcriptomic and proteomic response of white sturgeon to equipotent concentrations of 2,3,7,8‐TCDD, PCB 77, and benzo [a] pyrene. Environmental Science & Technology, 50(9), 4826–4835.
Doering, J. A., Villeneuve, D. L., Fay, K. A., Randolph, E. C., Jensen, K. M., Kahl, M. D., LaLone, C. A., & Ankley, G. T. (2019a). Differential sensitivity of in vitro inhibition of cytochrome P450 aromatase (CYP19) activity among 18 freshwater fishes. Toxicological Sciences, 170(2), 394–403.
Doering, J. A., Villeneuve, D. L., Poole, S. T., Blackwell, B. R., Jensen, K. M., Kahl, M. D., Kittelson, A. R., Feifarek, D. J., Tilton, C. B., Lalone, C. A., & Ankley, G. T. (2019b). Quantitative response‐response relationships linking aromatase inhibition to decreased fecundity are conserved across three fishes with asynchronous oocyte development. Environmental Science & Technology, 53(17), 10470–10478.
Doering, J. A., Villeneuve, D. L., Tilton, C. B., Kittelson, A. R., Blackwell, B. R., Kahl, M. D., Jensen, K. M., Poole, S. T., Cavallin, J. E., Cole, A. R., Dean, K. N., LaLone, C. A., & Ankley, G. T. (2021). Assessing effects of aromatase inhibition on fishes with group‐synchronous oocyte development using western mosquitofish (Gambusia affinis) as a model. Aquatic Toxicology, 232, 105741.
Doering, J. A., Wiseman, S., Giesy, J. P., & Hecker, M. (2018). A cross‐species quantitative adverse outcome pathway for activation of the aryl hydrocarbon receptor leading to early life stage mortality in birds and fishes. Environmental Science & Technology, 52(13), 7524–7533.
Dong, W, Wang, L., Thornton, C., Scheffler, B. E., & Willett, K. L. (2008). Benzo[a]pyrene decreases brain and ovarian aromatase mRNA expression in Fundulus heteroclitus. Aquatic Toxicology, 88, 289–300.
Dubiel, J., Green, D., Raza, Y., Johnson, H. M., Xia, Z., Tomy, G. T., Hontela, A., Doering, J. A., & Wiseman, S. (2022). Alkylation of benz[a]anthracene affects toxicity to early‐life stage zebrafish and in vitro aryl hydrocarbon receptor 2 transactivation in a position‐dependent manner. Environmental Toxicology and Chemistry, 41(8), 1993–2002. https://doi.org/10.1002/etc.5396
Dubiel, J., Johnson, H., Eriksson, A. N. M., Hontela, A., Doering, J. A., & Wiseman, S. (2023). Effects of alkylation on potency of benz[a]anthracene for AhR2 transactivation in nine species of freshwater fish. Environmental Toxicology and Chemistry, 42(7), 1575–1585. https://doi.org/10.1002/etc.5638
Fang, X., Corrales, J., Thornton, C., Scheffler, B. E., & Willett, K. L. (2013a). Global and gene specific DNA methylation changes during zebrafish development. Comparative Biochemistry and Physiology. B: Comparative Biochemistry, 166, 99–108.
Fang, X., Thornton, C., Scheffler, B. E., & Willett, K. L. (2013b). Benzo[a]pyrene decreases global and gene specific DNA methylation during zebrafish development. Environmental Toxicology and Pharmacology, 36, 40–50.
Farmahin, R., Wu, D., Crump, D., Hervé, J. C., Jones, S. P., Hahn, M. E., Karchner, S. I., Giesy, J. P., Bursian, S. J., Zwiernik, M. J., & Kennedy, S. W. (2012). Sequence and in vitro function of chicken, ring‐necked pheasant, and Japanese quail AHR1 predict in vivo sensitivity to dioxins. Environmental Science & Technology, 46, 2967–2975.
Gao, D., Lin, J., Ou, K., Chen, Y., Li, H., Dai, Q., Yu, Z., Zuo, Z., & Wang, C. (2018). Embryonic exposure to benzo(a)pyrene inhibits reproductive capability in adult female zebrafish and correlation with DNA methylation. Environmental Pollution, 240, 403–411.
Han, D., Nagy, S. R., & Denison, M. S. (2004). Comparison of recombinant cell bioassays for the detection of Ah receptor agonists. Biofactors, 20, 11–22.
Head, J. A., Dolinoy, D. C., & Basu, N. (2012). Epigenetics for ecotoxicologists. Environmental Toxicology and Chemistry, 31(2), 221–227. https://doi.org/10.1002/etc.1707
Hornung, M. W., Cook, P. M., Fitzsimmons, P. N., Kuchl, D. W., & Nichols, J. W. (2007). Tissue distribution and metabolism of benzo[a]pyrene in embryonic and larval medaka (Oryzias latipes). Toxicological Sciences, 100, 393–405.
Hu, J., & Yu, Y. (2019). Epigenetic response profiles into environmental epigenotoxicant screening and health risk assessment: A critical review. Chemosphere, 226, 259–272.
Hylland, K. (2006). Polycyclic aromatic hydrocarbon (PAH) ecotoxicology in marine ecosystems. Journal of Toxicology and Environmental Health. Part A, 69, 109–123.
Idowu, I., Francisco, O., Thomas, P. J., Johnson, W., Marvin, C., Stetefeld, J., & Tomy, G. T. (2018). Validation of a simultaneous method for determining polycyclic aromatic compounds and alkylated isomers in biota. Rapid Communications in Mass Spectrometry, 32(3), 277–287.
Incardona, J. P., Day, H. L., Collier, T. K., & Scholz, N. L. (2006). Developmental toxicity of 4‐ring polycyclic aromatic hydrocarbons in zebrafish is differentially dependent on AH receptor isoforms and hepatic cytochrome P4501A metabolism. Toxicology and Applied Pharmacology, 217, 308–321.
Juschke, C., Dohnal, I., Pichler, P., Harzer, H., Swart, R., Ammerer, G., Mechtler, K., & Knoblicj, J. A. (2013). Transcriptome and proteome quantification of a tumor model provides novel insights into post‐translational gene regulation. Genome Biology, 14, r1f33.
King‐Heiden, T. C., Spitsbergen, J., Heideman, W., & Petersen, R. E. (2009). Persistent adverse effects on health and reproduction caused by exposure of zebrafish to 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin during early development and gonad differentiation. Toxicological Sciences, 109, 75–87.
Knecht, A. L., Truong, L., Marvel, S. W., Reif, D. M., Garcia, A., Lu, C., Simonich, M. T., Teeguarden, J. G., & Tanguay, R. L. (2017). Transgenerational inheritance of neurobehavioral and physiological deficits from developmental exposure to benzo[a]pyrene in zebrafish. Toxicology and Applied Pharmacology, 329, 148–157.
Kuc, C., Richard, D. J., Johnson, S., Bragg, L., Servos, M. R., Doxey, A. C., & Craig, P. M. (2007). Rainbow trout exposed to benzo[a]pyrene yields conserved microRNA binding sites in DNA methyltransferases across 500 million years of evolution. Scientific Reports, 7, 16843.
Mathew, R., McGrath, J. A., & Di Toro, D. M. (2008). Modeling polycyclic aromatic hydrocarbon bioaccumulation and metabolism in time‐variable early life‐stage exposures. Environmental Toxicology and Chemistry, 27(7), 1515–1525. https://doi.org/10.1897/07-355.1
McCarthy, J. F., Burrus, L. W., & Tolbert, V. R. (2003). Bioaccumulation of benzo(a)pyrene from sediment by fathead minnows: Effects of organic content, resuspension and metabolism. Archives of Environmental Contamination and Toxicology, 45, 364–370.
Mo, J., Au, D., Guo, J., Winkler, C., Kong, R., & Seemann, F. (2022). Benzo[a]pyrene osteotoxicity and the regulatory roles of genetic and epigenetic factors: A review. Critical Reviews Environmental Science Technology, 52(18), 3244–3282.
Nisbet, I. C. T., & LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16, 290–300.
National Research Council. (2007). Toxicity testing in the 21st century: A vision and a strategy. The National Academies Press.
Organisation for Economic Co‐operation and Development. (2012). Test No. 229, Fish short term reproduction assay, OECD guidelines for the testing of chemicals, Section 2.
Organisation for Economic Co‐operation and Development. (2013). Test No. 210, Fish, early‐life stage toxicity test, OECD guidelines for the testing of chemicals, Section 2.
Olsvik, P. A., Williams, T. D., Tung, H., Mirbahai, L., Sanden, M., Skjaerven, K. H., & Ellingsen, S. (2014). Impacts of TCDD and MeHg on DNA methylation in zebrafish (Danio rerio) across two generations. Comparative Biochemistry and Physiology. C: Comparative Pharmacology and Toxicology. 165, 17–27.
Perkins, E. J., Ashauer, R., Burgoon, L., Conolly, R., Landesmann, B., Mackay, C., Murphy, C. A., Pollesch, N., Wheeler, J. R., Zupanic, A., & Scholz, S. (2019). Building and applying quantitative adverse outcome pathway models for chemical hazard and risk assessment. Environmental Toxicology and Chemistry, 38(9), 1850–1865. https://doi.org/10.1002/etc.4505
Petersen, G. I., & Kristensen, P. (1998). Bioaccumulation of lipophilic substances in fish early life stages. Environmental Toxicology and Chemistry, 17(7), 1385–1395. https://doi.org/10.1002/etc.5620170724
Pfaffl, M. (2001). W. A new mathematical model for relative quantification in real‐time RT‐PCR. Nucleic Acids Research, 29(9), e45.
Rushing, S. R., & Denison, M. S. (2002). The silencing mediator of retinoic acid and thyroid hormone receptors can interact with the aryl hydrocarbon (Ah) receptor but fails to repress Ah receptor‐dependent gene expression. Archives of Biochemistry and Biophysics, 403, 189–201.
Shen, H., Huang, Y., Wang, R., Zhu, D., Li, W., Shen, G., Wang, B., Zhang, Y., Chen, Y., Lu, Y., Chen, H., Li, T., Sun, K., Li, B., Liu, W., Liu, J., & Tao, S. (2013). Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environmental Science & Technology, 47, 6415–6424.
Spinu, N., Cronin, M. T. D., Enoch, S. J., Madden, J. C., & Worth, A. P. (2020). Quantitative adverse outcome pathway (qAOP) models for toxicity prediction. Archives of Toxicology, 94, 1497–1510.
Tanguay, R. L., Abnet, C. C., Heideman, W., & Peterson, R. E. (1999). Cloning and characterization of the zebrafish (Danio rerio) aryl hydrocarbon receptor. Biochimica et Biophysica Acta — Gene Structure and Expression, 1444(1), 35–48.
Villeneuve, D. L., Crump, D., Garcia‐Reyero, N., Hecker, M., Hutchinson, T. H., LaLone, C. A., Landesmann, B., Lettieri, T., Munn, S., Nepelska, M., Ottinger, M. A., Vergauwen, L., & Whelan, M. (2014). Adverse outcome pathway (AOP) development I: Strategies and principles. Toxicological Sciences, 142(2), 312–320.