SMYD5 methylation of rpL40 links ribosomal output to gastric cancer.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
24 Jul 2024
Historique:
received: 26 07 2023
accepted: 14 06 2024
medline: 26 7 2024
pubmed: 26 7 2024
entrez: 24 7 2024
Statut: aheadofprint

Résumé

Dysregulated transcription due to disruption in histone lysine methylation dynamics is an established contributor to tumorigenesis

Identifiants

pubmed: 39048817
doi: 10.1038/s41586-024-07718-0
pii: 10.1038/s41586-024-07718-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Robichaud, N., Sonenberg, N., Ruggero, D. & Schneider, R. J. Translational control in cancer. Cold Spring Harb. Perspect. Biol. 11, a032896 (2019).
pubmed: 29959193 pmcid: 6601465 doi: 10.1101/cshperspect.a032896
Kovalski, J. R., Kuzuoglu-Ozturk, D. & Ruggero, D. Protein synthesis control in cancer: selectivity and therapeutic targeting. EMBO J. 41, e109823 (2022).
pubmed: 35315941 pmcid: 9016353 doi: 10.15252/embj.2021109823
Baker, R. T. & Board, P. G. The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes. Nucleic Acids Res. 19, 1035–1040 (1991).
pubmed: 1850507 pmcid: 333777 doi: 10.1093/nar/19.5.1035
Morgan, E. et al. The current and future incidence and mortality of gastric cancer in 185 countries, 2020-40: a population-based modelling study. eClinicalMedicine 47, 101404 (2022).
pubmed: 35497064 pmcid: 9046108 doi: 10.1016/j.eclinm.2022.101404
Hirata, Y., Noorani, A., Song, S., Wang, L. & Ajani, J. A. Early stage gastric adenocarcinoma: clinical and molecular landscapes. Nat. Rev. Clin. Oncol. 20, 453–469 (2023).
pubmed: 37264184 doi: 10.1038/s41571-023-00767-w
Manzanedo, I., Pereira, F., Perez-Viejo, E. & Serrano, A. Gastric cancer with peritoneal metastases: current status and prospects for treatment. Cancers 15, 1777 (2023).
pubmed: 36980663 pmcid: 10046173 doi: 10.3390/cancers15061777
Bhat, K. P., Umit Kaniskan, H., Jin, J. & Gozani, O. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Nat. Rev. Drug. Discov. 20, 265–286 (2021).
pubmed: 33469207 pmcid: 8035164 doi: 10.1038/s41573-020-00108-x
Meng, X. et al. Comprehensive analysis of histone modification-associated genes on differential gene expression and prognosis in gastric cancer. Exp. Ther. Med. 18, 2219–2230 (2019).
pubmed: 31452712 pmcid: 6704541
Zhang, Y. et al. Unique SMYD5 structure revealed by AlphaFold correlates with its functional divergence. Biomolecules 12, 783 (2022).
pubmed: 35740908 pmcid: 9221539 doi: 10.3390/biom12060783
Zhang, Y. et al. SMYD5 catalyzes histone H3 lysine 36 trimethylation at promoters. Nat. Commun. 13, 3190 (2022).
pubmed: 35680905 pmcid: 9184575 doi: 10.1038/s41467-022-30940-1
Stender, J. D. et al. Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol. Cell 48, 28–38 (2012).
pubmed: 22921934 pmcid: 3472359 doi: 10.1016/j.molcel.2012.07.020
Husmann, D. & Gozani, O. Histone lysine methyltransferases in biology and disease. Nat. Struct. Mol. Biol. 26, 880–889 (2019).
pubmed: 31582846 pmcid: 6951022 doi: 10.1038/s41594-019-0298-7
Afjehi-Sadat, L. & Garcia, B. A. Comprehending dynamic protein methylation with mass spectrometry. Curr. Opin. Chem. Biol. 17, 12–19 (2013).
pubmed: 23333572 pmcid: 4055027 doi: 10.1016/j.cbpa.2012.12.023
Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006).
pubmed: 16381927 doi: 10.1093/nar/gkj109
Williamson, N. A., Raliegh, J., Morrice, N. A. & Wettenhall, R. E. Post-translational processing of rat ribosomal proteins. Ubiquitous methylation of Lys22 within the zinc-finger motif of RL40 (carboxy-terminal extension protein 52) and tissue-specific methylation of Lys4 in RL29. Eur. J. Biochem. 246, 786–793 (1997).
pubmed: 9219540 doi: 10.1111/j.1432-1033.1997.00786.x
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Eastham, M. J., Pelava, A., Wells, G. R., Watkins, N. J. & Schneider, C. RPS27a and RPL40, which are produced as ubiquitin fusion proteins, are not essential for p53 signalling. Biomolecules 13, 898 (2023).
pubmed: 37371478 pmcid: 10296562 doi: 10.3390/biom13060898
Shi, Z. et al. Heterogeneous ribosomes preferentially translate distinct subpools of mRNAs genome-wide. Mol. Cell 67, 71–83.e7 (2017).
pubmed: 28625553 pmcid: 5548184 doi: 10.1016/j.molcel.2017.05.021
Guimaraes, J. C. & Zavolan, M. Patterns of ribosomal protein expression specify normal and malignant human cells. Genome Biol. 17, 236 (2016).
pubmed: 27884178 pmcid: 5123215 doi: 10.1186/s13059-016-1104-z
Ferretti, M. B. & Karbstein, K. Does functional specialization of ribosomes really exist? RNA 25, 521–538 (2019).
pubmed: 30733326 pmcid: 6467006 doi: 10.1261/rna.069823.118
Miller, S. C., MacDonald, C. C., Kellogg, M. K., Karamysheva, Z. N. & Karamyshev, A. L. Specialized ribosomes in health and disease. Int. J. Mol. Sci. 24, 6334 (2023).
pubmed: 37047306 pmcid: 10093926 doi: 10.3390/ijms24076334
Panda, A. et al. Tissue- and development-stage-specific mRNA and heterogeneous CNV signatures of human ribosomal proteins in normal and cancer samples. Nucleic Acids Res. 48, 7079–7098 (2020).
pubmed: 32525984 pmcid: 7367157
Lee, A. S., Burdeinick-Kerr, R. & Whelan, S. P. A ribosome-specialized translation initiation pathway is required for cap-dependent translation of vesicular stomatitis virus mRNAs. Proc. Natl Acad. Sci. USA 110, 324–329 (2013).
pubmed: 23169626 doi: 10.1073/pnas.1216454109
Gandin, V. et al. Polysome fractionation and analysis of mammalian translatomes on a genome-wide scale. J. Vis. Exp. 87, 51455 (2014).
Liu, S. et al. METTL13 methylation of eEF1A increases translational output to promote tumorigenesis. Cell 176, 491–504.e421 (2019).
pubmed: 30612740 pmcid: 6499081 doi: 10.1016/j.cell.2018.11.038
Schmidt, E. K., Clavarino, G., Ceppi, M. & Pierre, P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat. Methods 6, 275–277 (2009).
pubmed: 19305406 doi: 10.1038/nmeth.1314
Iwasaki, S. & Ingolia, N. T. The growing toolbox for protein synthesis studies. Trends Biochem. Sci. 42, 612–624 (2017).
pubmed: 28566214 pmcid: 5533619 doi: 10.1016/j.tibs.2017.05.004
Nielsen, P. J. & McConkey, E. H. Evidence for control of protein synthesis in HeLa cells via the elongation rate. J. Cell. Physiol. 104, 269–281 (1980).
pubmed: 7419605 doi: 10.1002/jcp.1041040302
Oertlin, C. et al. Generally applicable transcriptome-wide analysis of translation using anota2seq. Nucleic Acids Res. 47, e70 (2019).
pubmed: 30926999 pmcid: 6614820 doi: 10.1093/nar/gkz223
Oertlin, C., Watt, K., Ristau, J. & Larsson, O. Anota2seq analysis for transcriptome-wide atudies of mRNA translation. Methods Mol. Biol. 2418, 243–268 (2022).
pubmed: 35119670 doi: 10.1007/978-1-0716-1920-9_15
Truitt, M. L. & Ruggero, D. New frontiers in translational control of the cancer genome. Nat. Rev. Cancer 16, 288–304 (2016).
pubmed: 27112207 pmcid: 5491099 doi: 10.1038/nrc.2016.27
Lim, H. J., Zhuang, L. & Fitzgerald, R. C. Current advances in understanding the molecular profile of hereditary diffuse gastric cancer and its clinical implications. J. Exp. Clin. Cancer Res. 42, 57 (2023).
pubmed: 36869400 pmcid: 9985294 doi: 10.1186/s13046-023-02622-3
Gregory, S. N. & Davis, J. L. CDH1 and hereditary diffuse gastric cancer: a narrative review. Chin. Clin. Oncol. 12, 25 (2023).
pubmed: 37303221 doi: 10.21037/cco-23-36
Pihlak, R., Fong, C. & Starling, N. Targeted therapies and developing precision medicine in gastric cancer. Cancers 15, 3248 (2023).
pubmed: 37370858 pmcid: 10296575 doi: 10.3390/cancers15123248
Seidlitz, T. et al. Mouse models of human gastric cancer subtypes with stomach-specific CreERT2-mediated pathway alterations. Gastroenterology 157, 1599–1614.e2 (2019).
pubmed: 31585123 doi: 10.1053/j.gastro.2019.09.026
Wong, H. H. & Chu, P. Immunohistochemical features of the gastrointestinal tract tumors. J. Gastrointest. Oncol. 3, 262–284 (2012).
pubmed: 22943017 pmcid: 3418530
Zhao, L. et al. Paracrine activation of MET promotes peritoneal carcinomatosis in scirrhous gastric cancer. Cancer Sci. 104, 1640–1646 (2013).
pubmed: 24118504 pmcid: 7653526 doi: 10.1111/cas.12301
Staudt, R. E., Carlson, R. D. & Snook, A. E. Targeting gastrointestinal cancers with chimeric antigen receptor (CAR)-T cell therapy. Cancer Biol. Ther. 23, 127–133 (2022).
pubmed: 35129050 pmcid: 8820794 doi: 10.1080/15384047.2022.2033057
Sadelain, M., Riviere, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).
pubmed: 28541315 pmcid: 5632949 doi: 10.1038/nature22395
Labanieh, L. & Mackall, C. L. CAR immune cells: design principles, resistance and the next generation. Nature 614, 635–648 (2023).
pubmed: 36813894 doi: 10.1038/s41586-023-05707-3
Qi, C. et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat. Med. 28, 1189–1198 (2022).
pubmed: 35534566 pmcid: 9205778 doi: 10.1038/s41591-022-01800-8
Carpenito, C. et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl Acad. Sci. USA 106, 3360–3365 (2009).
pubmed: 19211796 pmcid: 2651342 doi: 10.1073/pnas.0813101106
Lv, J. et al. Mesothelin is a target of chimeric antigen receptor T cells for treating gastric cancer. J. Hematol. Oncol. 12, 18 (2019).
pubmed: 30777106 pmcid: 6380000 doi: 10.1186/s13045-019-0704-y
Jana, S. et al. Transcriptional–translational conflict is a barrier to cellular transformation and cancer progression. Cancer Cell 41, 853–870.e13 (2023).
pubmed: 37084735 pmcid: 10208629 doi: 10.1016/j.ccell.2023.03.021
Sfakianos, A. P., Raven, R. M. & Willis, A. E. The pleiotropic roles of eIF5A in cellular life and its therapeutic potential in cancer. Biochem. Soc. Trans. 50, 1885–1895 (2022).
pubmed: 36511302 pmcid: 9788402 doi: 10.1042/BST20221035
Clarke, S. G. Protein methylation at the surface and buried deep: thinking outside the histone box. Trends Biochem. Sci. 38, 243–252 (2013).
pubmed: 23490039 pmcid: 3634909 doi: 10.1016/j.tibs.2013.02.004
Mealey-Farr, R. et al. Antibody toolkit to investigate eEF1A methylation dynamics in mRNA translation elongation. J. Biol. Chem. 299, 104747 (2023).
pubmed: 37094697 pmcid: 10220242 doi: 10.1016/j.jbc.2023.104747
Simsek, D. & Barna, M. An emerging role for the ribosome as a nexus for post-translational modifications. Curr. Opin. Cell Biol. 45, 92–101 (2017).
pubmed: 28445788 pmcid: 5731828 doi: 10.1016/j.ceb.2017.02.010
Tian, X., Ju, H. & Yang, W. An ego network analysis approach identified important biomarkers with an association to progression and metastasis of gastric cancer. J. Cell. Biochem. 120, 15963–15970 (2019).
pubmed: 31081222 doi: 10.1002/jcb.28873
Reynoird, N. et al. Coordination of stress signals by the lysine methyltransferase SMYD2 promotes pancreatic cancer. Genes Dev. 30, 772–785 (2016).
pubmed: 26988419 pmcid: 4826394 doi: 10.1101/gad.275529.115
Van Aller, G. S. et al. Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics 7, 340–343 (2012).
pubmed: 22419068 pmcid: 3368817 doi: 10.4161/epi.19506
Edmunds, J. W., Mahadevan, L. C. & Clayton, A. L. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27, 406–420 (2008).
pubmed: 18157086 doi: 10.1038/sj.emboj.7601967
Schotta, G. et al. A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev. 22, 2048–2061 (2008).
pubmed: 18676810 pmcid: 2492754 doi: 10.1101/gad.476008
Pagans, S. et al. The cellular lysine methyltransferase Set7/9-KMT7 binds HIV-1 TAR RNA, monomethylates the viral transactivator Tat, and enhances HIV transcription. Cell Host Microbe 7, 234–244 (2010).
pubmed: 20227666 pmcid: 2844784 doi: 10.1016/j.chom.2010.02.005
Luger, K., Rechsteiner, T. J. & Richmond, T. J. in Chromatin Protocols. Methods in Molecular Biology, vol. 119 (ed. Becker P. B.) 1–16 (1999).
Zoabi, M. et al. Methyltransferase-like 21 C (METTL21C) methylates alanine tRNA synthetase at Lys-943 in muscle tissue. J. Biol. Chem. 295, 11822–11832 (2020).
pubmed: 32611769 pmcid: 7450112 doi: 10.1074/jbc.RA120.014505
Baymaz, H. I., Spruijt, C. G. & Vermeulen, M. in Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). Methods Mol. Biol., vol. 1188 (ed. Warscheid, B.) 207–226 (2014).
Wingfield P. Protein precipitation using ammonium sulfate. Curr. Protoc. Protein. Sci. Appendix 3:Appendix-3F (2001).
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
pubmed: 19029910 doi: 10.1038/nbt.1511
Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner (Lawrence Berkeley National Lab, 2014).
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
pubmed: 23193283 doi: 10.1093/nar/gks1219
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
pubmed: 25751142 pmcid: 4655817 doi: 10.1038/nmeth.3317
Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47, e47 (2019).
pubmed: 30783653 pmcid: 6486549 doi: 10.1093/nar/gkz114
Pruitt, K. D. et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res. 42, D756–D763 (2013).
pubmed: 24259432 pmcid: 3965018 doi: 10.1093/nar/gkt1114
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).
pubmed: 19910308 pmcid: 2796818 doi: 10.1093/bioinformatics/btp616
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. pcaMethods—a Bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164–1167 (2007).
pubmed: 17344241 doi: 10.1093/bioinformatics/btm069
Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 28, 2184–2185 (2012).
pubmed: 22743226 doi: 10.1093/bioinformatics/bts356
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Mootha, V. K. et al. PGC-α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).
pubmed: 12808457 doi: 10.1038/ng1180
Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2021).
Guan, B.-J. et al. A unique ISR program determines cellular responses to chronic stress. Mol. Cell 68, 885–900.e6 (2017).
pubmed: 29220654 pmcid: 5730339 doi: 10.1016/j.molcel.2017.11.007
Mansour, F. H. & Pestov, D. G. Separation of long RNA by agarose–formaldehyde gel electrophoresis. Anal. Biochem. 441, 18–20 (2013).
pubmed: 23800830 pmcid: 3755752 doi: 10.1016/j.ab.2013.06.008
Rahman, S. & Zenklusen, D. in Imaging Gene Expresson. Methods in Molecular Biology, vol. 1042 (ed. Shav-Tal, Y.) 33–46 (Humana Press, 2013).
Scott, D. D. et al. Nol12 is a multifunctional RNA binding protein at the nexus of RNA and DNA metabolism. Nucleic Acids Res. 45, 12509–12528 (2017).
pubmed: 29069457 pmcid: 5716212 doi: 10.1093/nar/gkx963
Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).
The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).
doi: 10.1038/nature13480
Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).
pubmed: 23550210 pmcid: 4160307 doi: 10.1126/scisignal.2004088
Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).
pubmed: 22588877 doi: 10.1158/2159-8290.CD-12-0095
Mazur, P. K. et al. SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature 510, 283–287 (2014).
pubmed: 24847881 pmcid: 4122675 doi: 10.1038/nature13320
Boussadia, O., Kutsch, S., Hierholzer, A., Delmas, V. & Kemler, R. E-cadherin is a survival factor for the lactating mouse mammary gland. Mech. Dev. 115, 53–62 (2002).
pubmed: 12049767 doi: 10.1016/S0925-4773(02)00090-4
Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 29, 418–425 (2001).
pubmed: 11694875 doi: 10.1038/ng747
Lesche, R. et al. Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 32, 148–149 (2002).
pubmed: 11857804 doi: 10.1002/gene.10036
Gao, X. et al. ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc. Natl Acad. Sci. USA 105, 6656–6661 (2008).
pubmed: 18448678 pmcid: 2373334 doi: 10.1073/pnas.0801802105
Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).
pubmed: 14706336 doi: 10.1016/S1535-6108(03)00309-X
Skarnes, W. C. et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337–342 (2011).
pubmed: 21677750 pmcid: 3572410 doi: 10.1038/nature10163
Raymond, C. S. & Soriano, P. High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS ONE 2, e162 (2007).
pubmed: 17225864 pmcid: 1764711 doi: 10.1371/journal.pone.0000162

Auteurs

Juhyung Park (J)

Department of Biology, Stanford University, Stanford, CA, USA.

Jibo Wu (J)

Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Krzysztof J Szkop (KJ)

Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institute, Stockholm, Sweden.

Jinho Jeong (J)

Department of Biology, Stanford University, Stanford, CA, USA.

Predrag Jovanovic (P)

Lady Davis Institute and Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.

Dylan Husmann (D)

Department of Biology, Stanford University, Stanford, CA, USA.

Natasha M Flores (NM)

Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Joel W Francis (JW)

Department of Biology, Stanford University, Stanford, CA, USA.

Ying-Jiun C Chen (YC)

Department of Biology, Stanford University, Stanford, CA, USA.
Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Ana Morales Benitez (AM)

Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Emily Zahn (E)

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.

Shumei Song (S)

Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Jaffer A Ajani (JA)

Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Linghua Wang (L)

Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Kamini Singh (K)

Department of Molecular Pharmacology, Albert Einstein College of Medicine, Montefiore Einstein Cancer Center, Bronx, NY, USA.

Ola Larsson (O)

Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institute, Stockholm, Sweden.

Benjamin A Garcia (BA)

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.

Ivan Topisirovic (I)

Lady Davis Institute and Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.

Or Gozani (O)

Department of Biology, Stanford University, Stanford, CA, USA. ogozani@stanford.edu.

Pawel K Mazur (PK)

Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. pkmazur@mdanderson.org.

Classifications MeSH