Human cytomegalovirus in breast milk is associated with milk composition and the infant gut microbiome and growth.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
23 Jul 2024
Historique:
received: 31 07 2023
accepted: 03 07 2024
medline: 24 7 2024
pubmed: 24 7 2024
entrez: 23 7 2024
Statut: epublish

Résumé

Human cytomegalovirus (CMV) is a highly prevalent herpesvirus that is often transmitted to the neonate via breast milk. Postnatal CMV transmission can have negative health consequences for preterm and immunocompromised infants, but any effects on healthy term infants are thought to be benign. Furthermore, the impact of CMV on the composition of the hundreds of bioactive factors in human milk has not been tested. Here, we utilize a cohort of exclusively breastfeeding full-term mother-infant pairs to test for differences in the milk transcriptome and metabolome associated with CMV, and the impact of CMV in breast milk on the infant gut microbiome and infant growth. We find upregulation of the indoleamine 2,3-dioxygenase (IDO) tryptophan-to-kynurenine metabolic pathway in CMV+ milk samples, and that CMV+ milk is associated with decreased Bifidobacterium in the infant gut. Our data indicate two opposing CMV-associated effects on infant growth; with kynurenine positively correlated, and CMV viral load negatively correlated, with infant weight-for-length at 1 month of age. These results suggest CMV transmission, CMV-related changes in milk composition, or both may be modulators of full-term infant development.

Identifiants

pubmed: 39043677
doi: 10.1038/s41467-024-50282-4
pii: 10.1038/s41467-024-50282-4
doi:

Substances chimiques

Kynurenine 343-65-7
Indoleamine-Pyrrole 2,3,-Dioxygenase 0
Tryptophan 8DUH1N11BX

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6216

Subventions

Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : F32HD105364

Informations de copyright

© 2024. The Author(s).

Références

Zuhair, M. et al. Estimation of the worldwide seroprevalence of cytomegalovirus: a systematic review and meta-analysis. Rev. Med. Virol. 29, e2034 (2019).
pubmed: 30706584 doi: 10.1002/rmv.2034
Sinzger, C. et al. Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J. Gen. Virol. 76, 741–750 (1995).
pubmed: 9049319 doi: 10.1099/0022-1317-76-4-741
Hamprecht, K. & Goelz, R. Postnatal cytomegalovirus infection through human milk in preterm infants: transmission, clinical presentation, and prevention. Clin. Perinatol. 44, 121–130 (2017).
pubmed: 28159200 doi: 10.1016/j.clp.2016.11.012
Hamprecht, K., Witzel, S., Maschmann, J., Speer, C. P. & Jahn, G. Transmission of cytomegalovirus infection through breast milk in term and pretern infants. In Short and long term effects of breast feeding on child health (eds. Koletzko, B., Michaelsen, K. F. & Hernell, O.) 231–239 (Springer US, Boston, MA, 2002).
Lazar, K., Rabe, T., Goelz, R. & Hamprecht, K. Human cytomegalovirus reactivation during lactation: impact of antibody kinetics and neutralization in blood and breast milk. Nutrients 12, 338 (2020).
pubmed: 32012818 pmcid: 7071316 doi: 10.3390/nu12020338
Meier, J. et al. Human cytomegalovirus reactivation during lactation and mother-to-child transmission in preterm infants. J. Clin. Microbiol. 43, 1318–1324 (2005).
pubmed: 15750102 pmcid: 1081237 doi: 10.1128/JCM.43.3.1318-1324.2005
Maschmann, J. et al. Characterization of human breast milk leukocytes and their potential role in cytomegalovirus transmission to newborns. Neonatology 107, 213–219 (2015).
pubmed: 25675905 doi: 10.1159/000371753
Hamprecht, K. et al. Rapid detection and quantification of cell free cytomegalovirus by a high-speed centrifugation-based microculture assay: comparison to longitudinally analyzed viral DNA load and pp67 late transcript during lactation. J. Clin. Virol. 28, 303–316 (2003).
pubmed: 14522069 doi: 10.1016/S1386-6532(03)00074-X
Hamprecht, K. et al. Detection of cytomegaloviral DNA in human milk cells and cell free milk whey by nested PCR. J. Virol. Methods 70, 167–176 (1998).
pubmed: 9562410 doi: 10.1016/S0166-0934(97)00179-1
Osterholm, E. A. & Schleiss, M. R. Impact of breast milk-acquired cytomegalovirus infection in premature infants: Pathogenesis, prevention, and clinical consequences? Rev. Med. Virol. 30, 1–11 (2020).
pubmed: 32662174 pmcid: 8173712 doi: 10.1002/rmv.2117
Lanzieri, T. M., Dollard, S. C., Josephson, C. D., Schmid, D. S. & Bialek, S. R. Breast milk-acquired cytomegalovirus infection and disease in VLBW and premature infants. Pediatrics 131, e1937–e1945 (2013).
pubmed: 23713111 doi: 10.1542/peds.2013-0076
Stagno, S., Reynolds, D. W., Pass, R. F. & Alford, C. A. Breast milk and the risk of cytomegalovirus infection. N. Engl. J. Med. 302, 1073–1076 (1980).
pubmed: 6245360 doi: 10.1056/NEJM198005083021908
Dworsky, M., Yow, M., Stagno, S., Pass, R. F. & Alford, C. Cytomegalovirus infection of breast milk and transmission in infancy. Pediatrics 72, 295–299 (1983).
pubmed: 6310479 doi: 10.1542/peds.72.3.295
Minamishima, I. et al. Role of breast milk in acquisition of cytomegalovirus infection. Microbiol. Immunol. 38, 549–552 (1994).
pubmed: 7968688 doi: 10.1111/j.1348-0421.1994.tb01821.x
Rabe, T., Lazar, K., Cambronero, C., Goelz, R. & Hamprecht, K. Human cytomegalovirus (HCMV) reactivation in the mammary gland induces a proinflammatory cytokine shift in breast milk. Microorganisms 8, 289 (2020).
pubmed: 32093317 pmcid: 7074878 doi: 10.3390/microorganisms8020289
Johnson, K. E. et al. Human milk variation is shaped by maternal genetics and impacts the infant gut microbiome. bioRxiv https://doi.org/10.1101/2023.01.24.525211 (2023).
Garwolińska, D., Namieśnik, J., Kot-Wasik, A. & Hewelt-Belka, W. Chemistry of human breast milk-A comprehensive review of the composition and role of milk metabolites in child development. J. Agric. Food Chem. 66, 11881–11896 (2018).
pubmed: 30247884 doi: 10.1021/acs.jafc.8b04031
Järvinen, K. M. Variations in human milk composition: impact on immune development and allergic disease susceptibility. Breastfeed. Med. 13, S11–S13 (2018).
pubmed: 29624425 doi: 10.1089/bfm.2018.29075.kjs
Neu, J. & Walker, W. A. Necrotizing enterocolitis. N. Engl. J. Med. 364, 255–264 (2011).
pubmed: 21247316 pmcid: 3628622 doi: 10.1056/NEJMra1005408
Shnayder, M. et al. Defining the transcriptional landscape during cytomegalovirus latency with single-cell RNA sequencing. MBio 9, e00013–18 (2018).
pubmed: 29535194 pmcid: 5850328 doi: 10.1128/mBio.00013-18
Tirosh, O. et al. The transcription and translation landscapes during human cytomegalovirus infection reveal novel host-pathogen interactions. PLoS Pathog. 11, e1005288 (2015).
pubmed: 26599541 pmcid: 4658056 doi: 10.1371/journal.ppat.1005288
Hein, M. Y. & Weissman, J. S. Functional single-cell genomics of human cytomegalovirus infection. Nat. Biotechnol. 40, 391–401 (2022).
pubmed: 34697476 doi: 10.1038/s41587-021-01059-3
Hertel, L. & Mocarski, E. S. Global analysis of host cell gene expression late during cytomegalovirus infection reveals extensive dysregulation of cell cycle gene expression and induction of Pseudomitosis independent of US28 function. J. Virol. 78, 11988–12011 (2004).
pubmed: 15479839 pmcid: 523267 doi: 10.1128/JVI.78.21.11988-12011.2004
Marcinowski, L. et al. Real-time transcriptional profiling of cellular and viral gene expression during lytic cytomegalovirus infection. PLoS Pathog. 8, e1002908 (2012).
pubmed: 22969428 pmcid: 3435240 doi: 10.1371/journal.ppat.1002908
Ahn, R. et al. Acute and chronic changes in gene expression after CMV DNAemia in kidney transplant recipients. Front. Immunol. 12, 750659 (2021).
pubmed: 34867983 pmcid: 8634678 doi: 10.3389/fimmu.2021.750659
Munger, J., Bajad, S. U., Coller, H. A., Shenk, T. & Rabinowitz, J. D. Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog. 2, e132 (2006).
pubmed: 17173481 pmcid: 1698944 doi: 10.1371/journal.ppat.0020132
Vastag, L., Koyuncu, E., Grady, S. L., Shenk, T. E. & Rabinowitz, J. D. Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism. PLoS Pathog. 7, e1002124 (2011).
pubmed: 21779165 pmcid: 3136460 doi: 10.1371/journal.ppat.1002124
Fanos, V. et al. Urinary metabolomics in newborns infected by human cytomegalovirus: a preliminary investigation. Early Hum. Dev. 89, S58–S61 (2013).
pubmed: 23809353 doi: 10.1016/S0378-3782(13)70017-3
Lemay, D. G. et al. RNA sequencing of the human milk fat layer transcriptome reveals distinct gene expression profiles at three stages of lactation. PLoS One 8, e67531 (2013).
pubmed: 23861770 pmcid: 3702532 doi: 10.1371/journal.pone.0067531
Lemay, D. G. et al. Sequencing the transcriptome of milk production: milk trumps mammary tissue. BMC Genomics 14, 872 (2013).
pubmed: 24330573 pmcid: 3871720 doi: 10.1186/1471-2164-14-872
Poulsen, K. O. & Sundekilde, U. K. The metabolomic analysis of human milk offers unique insights into potential child health benefits. Curr. Nutr. Rep. 10, 12–29 (2021).
pubmed: 33555534 doi: 10.1007/s13668-020-00345-x
Hernandez-Alvarado, N. et al. Clinical, virologic and immunologic correlates of breast milk acquired cytomegalovirus (CMV) infections in very low birth weight (VLBW) infants in a newborn intensive care unit (NICU) setting. Viruses 13, 1897 (2021).
pubmed: 34696327 pmcid: 8539954 doi: 10.3390/v13101897
Dollard, S. C. et al. Sensitivity of dried blood spot testing for detection of congenital cytomegalovirus infection. JAMA Pediatr. 175, e205441 (2021).
pubmed: 33523119 pmcid: 7851756 doi: 10.1001/jamapediatrics.2020.5441
Cannon, M. J., Schmid, D. S. & Hyde, T. B. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev. Med. Virol. 20, 202–213 (2010).
pubmed: 20564615 doi: 10.1002/rmv.655
Mentzer, A. J. et al. Identification of host-pathogen-disease relationships using a scalable multiplex serology platform in UK Biobank. Nat. Commun. 13, 1818 (2022).
pubmed: 35383168 pmcid: 8983701 doi: 10.1038/s41467-022-29307-3
Lantos, P. M., Permar, S. R., Hoffman, K. & Swamy, G. K. The excess burden of cytomegalovirus in african american communities: a geospatial analysis. Open Forum Infect. Dis. 2, ofv180 (2015).
pubmed: 26716106 pmcid: 4691661 doi: 10.1093/ofid/ofv180
Twigger, A.-J. et al. Transcriptional changes in the mammary gland during lactation revealed by single cell sequencing of cells from human milk. Nat. Commun. 13, 562 (2022).
pubmed: 35091553 pmcid: 8799659 doi: 10.1038/s41467-021-27895-0
Nyquist, S. K. et al. Cellular and transcriptional diversity over the course of human lactation. Proc. Natl Acad. Sci. USA 119, e2121720119 (2022).
pubmed: 35377806 pmcid: 9169737 doi: 10.1073/pnas.2121720119
Gleeson, J. P. et al. Profiling of mature-stage human breast milk cells identifies six unique lactocyte subpopulations. Sci. Adv. 8, eabm6865 (2022).
pubmed: 35767604 pmcid: 9242445 doi: 10.1126/sciadv.abm6865
Martin Carli, J. F. et al. Single cell RNA sequencing of human milk-derived cells reveals sub-populations of mammary epithelial cells with molecular signatures of progenitor and mature states: a novel, non-invasive framework for investigating human lactation physiology. J. Mammary Gland Biol. Neoplasia (2020).
Lueder, Y. et al. Control of primary mouse cytomegalovirus infection in lung nodular inflammatory foci by cooperation of interferon-gamma expressing CD4 and CD8 T cells. PLoS Pathog. 14, e1007252 (2018).
pubmed: 30153311 pmcid: 6112668 doi: 10.1371/journal.ppat.1007252
Moylan, D. C. et al. Breast milk human cytomegalovirus (CMV) viral load and the establishment of breast milk CMV-pp65-specific CD8 T cells in human CMV infected mothers. J. Infect. Dis. 216, 1176–1179 (2017).
pubmed: 28968907 pmcid: 5853445 doi: 10.1093/infdis/jix457
Lazar, K. et al. Immunomonitoring of human breast milk cells during HCMV-reactivation. Front. Immunol. 12, 723010 (2021).
pubmed: 34566980 pmcid: 8462275 doi: 10.3389/fimmu.2021.723010
Ojo-Okunola, A., Cacciatore, S., Nicol, M. P. & du Toit, E. The determinants of the human milk metabolome and its role in infant health. Metabolites 10, 77 (2020).
pubmed: 32093351 pmcid: 7074355 doi: 10.3390/metabo10020077
Pace, R. M. et al. Variation in human milk composition is related to differences in milk and infant fecal microbial communities. Microorganisms 9, 1153 (2021).
pubmed: 34072117 pmcid: 8230061 doi: 10.3390/microorganisms9061153
Kijner, S., Kolodny, O. & Yassour, M. Human milk oligosaccharides and the infant gut microbiome from an eco-evolutionary perspective. Curr. Opin. Microbiol. 68, 102156 (2022).
pubmed: 35598464 doi: 10.1016/j.mib.2022.102156
Boudry, G. et al. The relationship between breast milk components and the infant gut microbiota. Front Nutr. 8, 629740 (2021).
pubmed: 33829032 pmcid: 8019723 doi: 10.3389/fnut.2021.629740
Heisel, T. et al. Bacterial, fungal, and interkingdom microbiome features of exclusively breastfeeding dyads are associated with infant age, antibiotic exposure, and birth mode. Front. Microbiol. 13, 1050574 (2022).
pubmed: 36466688 pmcid: 9714262 doi: 10.3389/fmicb.2022.1050574
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
WHO multicentre growth reference study group & de Onis, M. WHO child growth standards based on length/height, weight and age. Acta Paediatr. 95, 76–85 (2006).
Bate, S. L., Dollard, S. C. & Cannon, M. J. Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys, 1988-2004. Clin. Infect. Dis. 50, 1439–1447 (2010).
pubmed: 20426575 doi: 10.1086/652438
Lanzieri, T. M., Kruszon-Moran, D., Gambhir, M. & Bialek, S. R. Influence of parity and sexual history on cytomegalovirus seroprevalence among women aged 20-49 years in the USA. Int. J. Gynaecol. Obstet. 135, 82–85 (2016).
pubmed: 27401134 pmcid: 5042139 doi: 10.1016/j.ijgo.2016.03.032
Hamprecht, K. et al. Epidemiology of transmission of cytomegalovirus from mother to preterm infant by breastfeeding. Lancet 357, 513–518 (2001).
pubmed: 11229670 doi: 10.1016/S0140-6736(00)04043-5
Mehraj, V. & Routy, J.-P. Tryptophan catabolism in chronic viral infections: handling uninvited guests. Int. J. Tryptophan Res. 8, 41–48 (2015).
pubmed: 26309411 pmcid: 4527356 doi: 10.4137/IJTR.S26862
Sadeghi, M. et al. Strong association of phenylalanine and tryptophan metabolites with activated cytomegalovirus infection in kidney transplant recipients. Hum. Immunol. 73, 186–192 (2012).
pubmed: 22142555 doi: 10.1016/j.humimm.2011.11.002
Wise, L. M., Xi, Y. & Purdy, J. G. Hypoxia-inducible factor 1α (HIF1α) suppresses virus replication in human cytomegalovirus infection by limiting kynurenine synthesis. MBio 12, e02956–20 (2021).
pubmed: 33758082 pmcid: 8092273 doi: 10.1128/mBio.02956-20
Mezrich, J. D. et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185, 3190–3198 (2010).
pubmed: 20720200 doi: 10.4049/jimmunol.0903670
Lu, P. et al. Maternal aryl hydrocarbon receptor activation protects newborns against necrotizing enterocolitis. Nat. Commun. 12, 1042 (2021).
pubmed: 33589625 pmcid: 7884836 doi: 10.1038/s41467-021-21356-4
Meng, D. et al. Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr. Res. 88, 209–217 (2020).
pubmed: 31945773 pmcid: 7363505 doi: 10.1038/s41390-019-0740-x
Stark, A., Cantrell, S., Greenberg, R. G., Permar, S. R. & Weimer, K. E. D. Long-term outcomes after postnatal cytomegalovirus infection in low birthweight preterm infants: a systematic review. Pediatr. Infect. Dis. J. 40, 571–581 (2021).
pubmed: 33902071 doi: 10.1097/INF.0000000000003072
Weimer, K. E. D., Kelly, M. S., Permar, S. R., Clark, R. H. & Greenberg, R. G. Association of adverse hearing, growth, and discharge age outcomes with postnatal cytomegalovirus infection in infants with very low birth weight. JAMA Pediatr. 174, 133–140 (2020).
pubmed: 31790557 doi: 10.1001/jamapediatrics.2019.4532
Meyer, S. A. et al. Postnatal cytomegalovirus exposure in infants of antiretroviral-treated and untreated HIV-infected mothers. Infect. Dis. Obstet. Gynecol. 2014, 989721 (2014).
pubmed: 24723745 pmcid: 3958696 doi: 10.1155/2014/989721
Gompels, U. A. et al. Human cytomegalovirus infant infection adversely affects growth and development in maternally HIV-exposed and unexposed infants in Zambia. Clin. Infect. Dis. 54, 434–442 (2012).
pubmed: 22247303 pmcid: 3258277 doi: 10.1093/cid/cir837
Ramani, S. et al. Human milk oligosaccharides, milk microbiome and infant gut microbiome modulate neonatal rotavirus infection. Nat. Commun. 9, 5010 (2018).
pubmed: 30479342 pmcid: 6258677 doi: 10.1038/s41467-018-07476-4
Ismail, I. H. et al. Early gut colonization by Bifidobacterium breve and B. catenulatum differentially modulates eczema risk in children at high risk of developing allergic disease. Pediatr. Allergy Immunol. 27, 838–846 (2016).
pubmed: 27590263 doi: 10.1111/pai.12646
Henrick, B. M. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898.e11 (2021).
pubmed: 34143954 doi: 10.1016/j.cell.2021.05.030
Dai, D. L. Y. et al. Breastfeeding enrichment of B. longum subsp. infantis mitigates the effect of antibiotics on the microbiota and childhood asthma risk. Med 4, 92–112.e5 (2023).
Kiu, R. et al. Preterm infant-associated clostridium tertium, clostridium cadaveris, and clostridium paraputrificum strains: genomic and evolutionary insights. Genome Biol. Evol. 9, 2707–2714 (2017).
pubmed: 29044436 pmcid: 5647805 doi: 10.1093/gbe/evx210
Cheah, F. C., Lim, K. E. & Boo, N. Y. Clostridium tertium in cerebrospinal fluid of a premature neonate with necrotizing enterocolitis: contamination or real? Acta Paediatr. 90, 704–705 (2001).
pubmed: 11440108 doi: 10.1111/j.1651-2227.2001.tb02438.x
Sbihi, H. et al. Early-life cytomegalovirus infection is associated with gut microbiota perturbations and increased risk of atopy. Pediatr. Allergy Immunol. 33, e13658 (2022).
pubmed: 34467574 doi: 10.1111/pai.13658
Fowler, K. B. et al. Racial and ethnic differences in the prevalence of congenital cytomegalovirus infection. J. Pediatr. 200, 196–201.e1 (2018).
pubmed: 29784513 doi: 10.1016/j.jpeds.2018.04.043
Kenneson, A. & Cannon, M. J. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev. Med. Virol. 17, 253–276 (2007).
pubmed: 17579921 doi: 10.1002/rmv.535
Isganaitis, E. et al. Maternal obesity and the human milk metabolome: associations with infant body composition and postnatal weight gain. Am. J. Clin. Nutr. 110, 111–120 (2019).
pubmed: 30968129 pmcid: 6599743 doi: 10.1093/ajcn/nqy334
Whitaker, K. M. et al. Associations of maternal weight status before, during, and after pregnancy with inflammatory markers in breast milk. Obesity 25, 2092–2099 (2017).
pubmed: 28985033 doi: 10.1002/oby.22025
Fields, D. A. et al. Associations between human breast milk hormones and adipocytokines and infant growth and body composition in the first 6 months of life. Pediatr. Obes. 12, 78–85 (2017).
pubmed: 28160457 pmcid: 5540830 doi: 10.1111/ijpo.12182
Sadr Dadres, G. et al. Relationship of maternal weight status before, during, and after pregnancy with breast milk hormone concentrations. Obesity 27, 621–628 (2019).
pubmed: 30900412 doi: 10.1002/oby.22409
DeLuca, D. S. et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics 28, 1530–1532 (2012).
pubmed: 22539670 pmcid: 3356847 doi: 10.1093/bioinformatics/bts196
Jew, B. et al. Accurate estimation of cell composition in bulk expression through robust integration of single-cell information. Nat. Commun. 11, 1971 (2020).
pubmed: 32332754 pmcid: 7181686 doi: 10.1038/s41467-020-15816-6
Götting, J. et al. Human cytomegalovirus genome diversity in longitudinally collected breast milk samples. Front. Cell. Infect. Microbiol. 11, 664247 (2021).
pubmed: 33937103 pmcid: 8085339 doi: 10.3389/fcimb.2021.664247
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Boppana, S. B. et al. Dried blood spot real-time polymerase chain reaction assays to screen newborns for congenital cytomegalovirus infection. JAMA 303, 1375–1382 (2010).
pubmed: 20388893 pmcid: 2997517 doi: 10.1001/jama.2010.423
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).
doi: 10.1111/j.2517-6161.1995.tb02031.x
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).
pubmed: 27141961 pmcid: 4987924 doi: 10.1093/nar/gkw377
Wolfs, D. et al. Brown fat-activating lipokine 12,13-diHOME in human milk is associated with infant adiposity. J. Clin. Endocrinol. Metab. 106, e943–e956 (2021).
pubmed: 33135728 doi: 10.1210/clinem/dgaa799
Leek, J. T. et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).
Krebs-Smith, S. M. et al. Update of the healthy eating index: HEI-2015. J. Acad. Nutr. Diet. 118, 1591–1602 (2018).
pubmed: 30146071 pmcid: 6719291 doi: 10.1016/j.jand.2018.05.021
R Core Team. R: a language and environment for statistical computing. http://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2024).
Al-Ghalith, G. A., Hillmann, B., Ang, K., Shields-Cutler, R. & Knights, D. SHI7 is a self-learning pipeline for multipurpose short-read DNA quality control. mSystems 3, e00202–e00217 (2018).
pubmed: 29719872 pmcid: 5915699 doi: 10.1128/mSystems.00202-17
Al-Ghalith, G. & Knights, D. BURST enables mathematically optimal short-read alignment for big data. bioRxiv https://doi.org/10.1101/2020.09.08.287128 (2020).
Beghini, F. et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife 10, e65088 (2021).
pubmed: 33944776 pmcid: 8096432 doi: 10.7554/eLife.65088
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
pubmed: 25402007 doi: 10.1038/nmeth.3176
Ye, Y. & Doak, T. G. A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes. PLoS Comput. Biol. 5, e1000465 (2009).
pubmed: 19680427 pmcid: 2714467 doi: 10.1371/journal.pcbi.1000465
Oksanen, J. et al. vegan: community ecology package. R package version 2.6-6.1 (2022).
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
doi: 10.18637/jss.v082.i13
Tahir, M. J. et al. Higher maternal diet quality during pregnancy and lactation is associated with lower infant weight-for-length, body fat percent, and fat mass in early postnatal life. Nutrients 11, 632 (2019).
pubmed: 30875943 pmcid: 6471184 doi: 10.3390/nu11030632
Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).
doi: 10.18637/jss.v048.i02
Dolan, A. et al. Genetic content of wild-type human cytomegalovirus. J. Gen. Virol. 85, 1301–1312 (2004).
pubmed: 15105547 doi: 10.1099/vir.0.79888-0

Auteurs

Kelsey E Johnson (KE)

Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA. kej@umn.edu.

Nelmary Hernandez-Alvarado (N)

Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA.

Mark Blackstad (M)

Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA.

Timothy Heisel (T)

Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA.

Mattea Allert (M)

Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA.

David A Fields (DA)

Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.

Elvira Isganaitis (E)

Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.

Katherine M Jacobs (KM)

Department of Obstetrics, Gynecology and Women's Health, Division of Maternal-Fetal Medicine, University of Minnesota Medical School, Minneapolis, MN, USA.

Dan Knights (D)

BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA.
Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA.

Eric F Lock (EF)

Division of Biostatistics and Health Data Science, University of Minnesota School of Public Health, Minneapolis, MN, USA.

Michael C Rudolph (MC)

Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA.

Cheryl A Gale (CA)

Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA.

Mark R Schleiss (MR)

Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA.

Frank W Albert (FW)

Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA.

Ellen W Demerath (EW)

Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA.

Ran Blekhman (R)

Section of Genetic Medicine, Division of Biological Sciences, University of Chicago, Chicago, IL, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH