Human cytomegalovirus in breast milk is associated with milk composition and the infant gut microbiome and growth.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
23 Jul 2024
23 Jul 2024
Historique:
received:
31
07
2023
accepted:
03
07
2024
medline:
24
7
2024
pubmed:
24
7
2024
entrez:
23
7
2024
Statut:
epublish
Résumé
Human cytomegalovirus (CMV) is a highly prevalent herpesvirus that is often transmitted to the neonate via breast milk. Postnatal CMV transmission can have negative health consequences for preterm and immunocompromised infants, but any effects on healthy term infants are thought to be benign. Furthermore, the impact of CMV on the composition of the hundreds of bioactive factors in human milk has not been tested. Here, we utilize a cohort of exclusively breastfeeding full-term mother-infant pairs to test for differences in the milk transcriptome and metabolome associated with CMV, and the impact of CMV in breast milk on the infant gut microbiome and infant growth. We find upregulation of the indoleamine 2,3-dioxygenase (IDO) tryptophan-to-kynurenine metabolic pathway in CMV+ milk samples, and that CMV+ milk is associated with decreased Bifidobacterium in the infant gut. Our data indicate two opposing CMV-associated effects on infant growth; with kynurenine positively correlated, and CMV viral load negatively correlated, with infant weight-for-length at 1 month of age. These results suggest CMV transmission, CMV-related changes in milk composition, or both may be modulators of full-term infant development.
Identifiants
pubmed: 39043677
doi: 10.1038/s41467-024-50282-4
pii: 10.1038/s41467-024-50282-4
doi:
Substances chimiques
Kynurenine
343-65-7
Indoleamine-Pyrrole 2,3,-Dioxygenase
0
Tryptophan
8DUH1N11BX
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6216Subventions
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : F32HD105364
Informations de copyright
© 2024. The Author(s).
Références
Zuhair, M. et al. Estimation of the worldwide seroprevalence of cytomegalovirus: a systematic review and meta-analysis. Rev. Med. Virol. 29, e2034 (2019).
pubmed: 30706584
doi: 10.1002/rmv.2034
Sinzger, C. et al. Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J. Gen. Virol. 76, 741–750 (1995).
pubmed: 9049319
doi: 10.1099/0022-1317-76-4-741
Hamprecht, K. & Goelz, R. Postnatal cytomegalovirus infection through human milk in preterm infants: transmission, clinical presentation, and prevention. Clin. Perinatol. 44, 121–130 (2017).
pubmed: 28159200
doi: 10.1016/j.clp.2016.11.012
Hamprecht, K., Witzel, S., Maschmann, J., Speer, C. P. & Jahn, G. Transmission of cytomegalovirus infection through breast milk in term and pretern infants. In Short and long term effects of breast feeding on child health (eds. Koletzko, B., Michaelsen, K. F. & Hernell, O.) 231–239 (Springer US, Boston, MA, 2002).
Lazar, K., Rabe, T., Goelz, R. & Hamprecht, K. Human cytomegalovirus reactivation during lactation: impact of antibody kinetics and neutralization in blood and breast milk. Nutrients 12, 338 (2020).
pubmed: 32012818
pmcid: 7071316
doi: 10.3390/nu12020338
Meier, J. et al. Human cytomegalovirus reactivation during lactation and mother-to-child transmission in preterm infants. J. Clin. Microbiol. 43, 1318–1324 (2005).
pubmed: 15750102
pmcid: 1081237
doi: 10.1128/JCM.43.3.1318-1324.2005
Maschmann, J. et al. Characterization of human breast milk leukocytes and their potential role in cytomegalovirus transmission to newborns. Neonatology 107, 213–219 (2015).
pubmed: 25675905
doi: 10.1159/000371753
Hamprecht, K. et al. Rapid detection and quantification of cell free cytomegalovirus by a high-speed centrifugation-based microculture assay: comparison to longitudinally analyzed viral DNA load and pp67 late transcript during lactation. J. Clin. Virol. 28, 303–316 (2003).
pubmed: 14522069
doi: 10.1016/S1386-6532(03)00074-X
Hamprecht, K. et al. Detection of cytomegaloviral DNA in human milk cells and cell free milk whey by nested PCR. J. Virol. Methods 70, 167–176 (1998).
pubmed: 9562410
doi: 10.1016/S0166-0934(97)00179-1
Osterholm, E. A. & Schleiss, M. R. Impact of breast milk-acquired cytomegalovirus infection in premature infants: Pathogenesis, prevention, and clinical consequences? Rev. Med. Virol. 30, 1–11 (2020).
pubmed: 32662174
pmcid: 8173712
doi: 10.1002/rmv.2117
Lanzieri, T. M., Dollard, S. C., Josephson, C. D., Schmid, D. S. & Bialek, S. R. Breast milk-acquired cytomegalovirus infection and disease in VLBW and premature infants. Pediatrics 131, e1937–e1945 (2013).
pubmed: 23713111
doi: 10.1542/peds.2013-0076
Stagno, S., Reynolds, D. W., Pass, R. F. & Alford, C. A. Breast milk and the risk of cytomegalovirus infection. N. Engl. J. Med. 302, 1073–1076 (1980).
pubmed: 6245360
doi: 10.1056/NEJM198005083021908
Dworsky, M., Yow, M., Stagno, S., Pass, R. F. & Alford, C. Cytomegalovirus infection of breast milk and transmission in infancy. Pediatrics 72, 295–299 (1983).
pubmed: 6310479
doi: 10.1542/peds.72.3.295
Minamishima, I. et al. Role of breast milk in acquisition of cytomegalovirus infection. Microbiol. Immunol. 38, 549–552 (1994).
pubmed: 7968688
doi: 10.1111/j.1348-0421.1994.tb01821.x
Rabe, T., Lazar, K., Cambronero, C., Goelz, R. & Hamprecht, K. Human cytomegalovirus (HCMV) reactivation in the mammary gland induces a proinflammatory cytokine shift in breast milk. Microorganisms 8, 289 (2020).
pubmed: 32093317
pmcid: 7074878
doi: 10.3390/microorganisms8020289
Johnson, K. E. et al. Human milk variation is shaped by maternal genetics and impacts the infant gut microbiome. bioRxiv https://doi.org/10.1101/2023.01.24.525211 (2023).
Garwolińska, D., Namieśnik, J., Kot-Wasik, A. & Hewelt-Belka, W. Chemistry of human breast milk-A comprehensive review of the composition and role of milk metabolites in child development. J. Agric. Food Chem. 66, 11881–11896 (2018).
pubmed: 30247884
doi: 10.1021/acs.jafc.8b04031
Järvinen, K. M. Variations in human milk composition: impact on immune development and allergic disease susceptibility. Breastfeed. Med. 13, S11–S13 (2018).
pubmed: 29624425
doi: 10.1089/bfm.2018.29075.kjs
Neu, J. & Walker, W. A. Necrotizing enterocolitis. N. Engl. J. Med. 364, 255–264 (2011).
pubmed: 21247316
pmcid: 3628622
doi: 10.1056/NEJMra1005408
Shnayder, M. et al. Defining the transcriptional landscape during cytomegalovirus latency with single-cell RNA sequencing. MBio 9, e00013–18 (2018).
pubmed: 29535194
pmcid: 5850328
doi: 10.1128/mBio.00013-18
Tirosh, O. et al. The transcription and translation landscapes during human cytomegalovirus infection reveal novel host-pathogen interactions. PLoS Pathog. 11, e1005288 (2015).
pubmed: 26599541
pmcid: 4658056
doi: 10.1371/journal.ppat.1005288
Hein, M. Y. & Weissman, J. S. Functional single-cell genomics of human cytomegalovirus infection. Nat. Biotechnol. 40, 391–401 (2022).
pubmed: 34697476
doi: 10.1038/s41587-021-01059-3
Hertel, L. & Mocarski, E. S. Global analysis of host cell gene expression late during cytomegalovirus infection reveals extensive dysregulation of cell cycle gene expression and induction of Pseudomitosis independent of US28 function. J. Virol. 78, 11988–12011 (2004).
pubmed: 15479839
pmcid: 523267
doi: 10.1128/JVI.78.21.11988-12011.2004
Marcinowski, L. et al. Real-time transcriptional profiling of cellular and viral gene expression during lytic cytomegalovirus infection. PLoS Pathog. 8, e1002908 (2012).
pubmed: 22969428
pmcid: 3435240
doi: 10.1371/journal.ppat.1002908
Ahn, R. et al. Acute and chronic changes in gene expression after CMV DNAemia in kidney transplant recipients. Front. Immunol. 12, 750659 (2021).
pubmed: 34867983
pmcid: 8634678
doi: 10.3389/fimmu.2021.750659
Munger, J., Bajad, S. U., Coller, H. A., Shenk, T. & Rabinowitz, J. D. Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog. 2, e132 (2006).
pubmed: 17173481
pmcid: 1698944
doi: 10.1371/journal.ppat.0020132
Vastag, L., Koyuncu, E., Grady, S. L., Shenk, T. E. & Rabinowitz, J. D. Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism. PLoS Pathog. 7, e1002124 (2011).
pubmed: 21779165
pmcid: 3136460
doi: 10.1371/journal.ppat.1002124
Fanos, V. et al. Urinary metabolomics in newborns infected by human cytomegalovirus: a preliminary investigation. Early Hum. Dev. 89, S58–S61 (2013).
pubmed: 23809353
doi: 10.1016/S0378-3782(13)70017-3
Lemay, D. G. et al. RNA sequencing of the human milk fat layer transcriptome reveals distinct gene expression profiles at three stages of lactation. PLoS One 8, e67531 (2013).
pubmed: 23861770
pmcid: 3702532
doi: 10.1371/journal.pone.0067531
Lemay, D. G. et al. Sequencing the transcriptome of milk production: milk trumps mammary tissue. BMC Genomics 14, 872 (2013).
pubmed: 24330573
pmcid: 3871720
doi: 10.1186/1471-2164-14-872
Poulsen, K. O. & Sundekilde, U. K. The metabolomic analysis of human milk offers unique insights into potential child health benefits. Curr. Nutr. Rep. 10, 12–29 (2021).
pubmed: 33555534
doi: 10.1007/s13668-020-00345-x
Hernandez-Alvarado, N. et al. Clinical, virologic and immunologic correlates of breast milk acquired cytomegalovirus (CMV) infections in very low birth weight (VLBW) infants in a newborn intensive care unit (NICU) setting. Viruses 13, 1897 (2021).
pubmed: 34696327
pmcid: 8539954
doi: 10.3390/v13101897
Dollard, S. C. et al. Sensitivity of dried blood spot testing for detection of congenital cytomegalovirus infection. JAMA Pediatr. 175, e205441 (2021).
pubmed: 33523119
pmcid: 7851756
doi: 10.1001/jamapediatrics.2020.5441
Cannon, M. J., Schmid, D. S. & Hyde, T. B. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev. Med. Virol. 20, 202–213 (2010).
pubmed: 20564615
doi: 10.1002/rmv.655
Mentzer, A. J. et al. Identification of host-pathogen-disease relationships using a scalable multiplex serology platform in UK Biobank. Nat. Commun. 13, 1818 (2022).
pubmed: 35383168
pmcid: 8983701
doi: 10.1038/s41467-022-29307-3
Lantos, P. M., Permar, S. R., Hoffman, K. & Swamy, G. K. The excess burden of cytomegalovirus in african american communities: a geospatial analysis. Open Forum Infect. Dis. 2, ofv180 (2015).
pubmed: 26716106
pmcid: 4691661
doi: 10.1093/ofid/ofv180
Twigger, A.-J. et al. Transcriptional changes in the mammary gland during lactation revealed by single cell sequencing of cells from human milk. Nat. Commun. 13, 562 (2022).
pubmed: 35091553
pmcid: 8799659
doi: 10.1038/s41467-021-27895-0
Nyquist, S. K. et al. Cellular and transcriptional diversity over the course of human lactation. Proc. Natl Acad. Sci. USA 119, e2121720119 (2022).
pubmed: 35377806
pmcid: 9169737
doi: 10.1073/pnas.2121720119
Gleeson, J. P. et al. Profiling of mature-stage human breast milk cells identifies six unique lactocyte subpopulations. Sci. Adv. 8, eabm6865 (2022).
pubmed: 35767604
pmcid: 9242445
doi: 10.1126/sciadv.abm6865
Martin Carli, J. F. et al. Single cell RNA sequencing of human milk-derived cells reveals sub-populations of mammary epithelial cells with molecular signatures of progenitor and mature states: a novel, non-invasive framework for investigating human lactation physiology. J. Mammary Gland Biol. Neoplasia (2020).
Lueder, Y. et al. Control of primary mouse cytomegalovirus infection in lung nodular inflammatory foci by cooperation of interferon-gamma expressing CD4 and CD8 T cells. PLoS Pathog. 14, e1007252 (2018).
pubmed: 30153311
pmcid: 6112668
doi: 10.1371/journal.ppat.1007252
Moylan, D. C. et al. Breast milk human cytomegalovirus (CMV) viral load and the establishment of breast milk CMV-pp65-specific CD8 T cells in human CMV infected mothers. J. Infect. Dis. 216, 1176–1179 (2017).
pubmed: 28968907
pmcid: 5853445
doi: 10.1093/infdis/jix457
Lazar, K. et al. Immunomonitoring of human breast milk cells during HCMV-reactivation. Front. Immunol. 12, 723010 (2021).
pubmed: 34566980
pmcid: 8462275
doi: 10.3389/fimmu.2021.723010
Ojo-Okunola, A., Cacciatore, S., Nicol, M. P. & du Toit, E. The determinants of the human milk metabolome and its role in infant health. Metabolites 10, 77 (2020).
pubmed: 32093351
pmcid: 7074355
doi: 10.3390/metabo10020077
Pace, R. M. et al. Variation in human milk composition is related to differences in milk and infant fecal microbial communities. Microorganisms 9, 1153 (2021).
pubmed: 34072117
pmcid: 8230061
doi: 10.3390/microorganisms9061153
Kijner, S., Kolodny, O. & Yassour, M. Human milk oligosaccharides and the infant gut microbiome from an eco-evolutionary perspective. Curr. Opin. Microbiol. 68, 102156 (2022).
pubmed: 35598464
doi: 10.1016/j.mib.2022.102156
Boudry, G. et al. The relationship between breast milk components and the infant gut microbiota. Front Nutr. 8, 629740 (2021).
pubmed: 33829032
pmcid: 8019723
doi: 10.3389/fnut.2021.629740
Heisel, T. et al. Bacterial, fungal, and interkingdom microbiome features of exclusively breastfeeding dyads are associated with infant age, antibiotic exposure, and birth mode. Front. Microbiol. 13, 1050574 (2022).
pubmed: 36466688
pmcid: 9714262
doi: 10.3389/fmicb.2022.1050574
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
WHO multicentre growth reference study group & de Onis, M. WHO child growth standards based on length/height, weight and age. Acta Paediatr. 95, 76–85 (2006).
Bate, S. L., Dollard, S. C. & Cannon, M. J. Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys, 1988-2004. Clin. Infect. Dis. 50, 1439–1447 (2010).
pubmed: 20426575
doi: 10.1086/652438
Lanzieri, T. M., Kruszon-Moran, D., Gambhir, M. & Bialek, S. R. Influence of parity and sexual history on cytomegalovirus seroprevalence among women aged 20-49 years in the USA. Int. J. Gynaecol. Obstet. 135, 82–85 (2016).
pubmed: 27401134
pmcid: 5042139
doi: 10.1016/j.ijgo.2016.03.032
Hamprecht, K. et al. Epidemiology of transmission of cytomegalovirus from mother to preterm infant by breastfeeding. Lancet 357, 513–518 (2001).
pubmed: 11229670
doi: 10.1016/S0140-6736(00)04043-5
Mehraj, V. & Routy, J.-P. Tryptophan catabolism in chronic viral infections: handling uninvited guests. Int. J. Tryptophan Res. 8, 41–48 (2015).
pubmed: 26309411
pmcid: 4527356
doi: 10.4137/IJTR.S26862
Sadeghi, M. et al. Strong association of phenylalanine and tryptophan metabolites with activated cytomegalovirus infection in kidney transplant recipients. Hum. Immunol. 73, 186–192 (2012).
pubmed: 22142555
doi: 10.1016/j.humimm.2011.11.002
Wise, L. M., Xi, Y. & Purdy, J. G. Hypoxia-inducible factor 1α (HIF1α) suppresses virus replication in human cytomegalovirus infection by limiting kynurenine synthesis. MBio 12, e02956–20 (2021).
pubmed: 33758082
pmcid: 8092273
doi: 10.1128/mBio.02956-20
Mezrich, J. D. et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185, 3190–3198 (2010).
pubmed: 20720200
doi: 10.4049/jimmunol.0903670
Lu, P. et al. Maternal aryl hydrocarbon receptor activation protects newborns against necrotizing enterocolitis. Nat. Commun. 12, 1042 (2021).
pubmed: 33589625
pmcid: 7884836
doi: 10.1038/s41467-021-21356-4
Meng, D. et al. Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr. Res. 88, 209–217 (2020).
pubmed: 31945773
pmcid: 7363505
doi: 10.1038/s41390-019-0740-x
Stark, A., Cantrell, S., Greenberg, R. G., Permar, S. R. & Weimer, K. E. D. Long-term outcomes after postnatal cytomegalovirus infection in low birthweight preterm infants: a systematic review. Pediatr. Infect. Dis. J. 40, 571–581 (2021).
pubmed: 33902071
doi: 10.1097/INF.0000000000003072
Weimer, K. E. D., Kelly, M. S., Permar, S. R., Clark, R. H. & Greenberg, R. G. Association of adverse hearing, growth, and discharge age outcomes with postnatal cytomegalovirus infection in infants with very low birth weight. JAMA Pediatr. 174, 133–140 (2020).
pubmed: 31790557
doi: 10.1001/jamapediatrics.2019.4532
Meyer, S. A. et al. Postnatal cytomegalovirus exposure in infants of antiretroviral-treated and untreated HIV-infected mothers. Infect. Dis. Obstet. Gynecol. 2014, 989721 (2014).
pubmed: 24723745
pmcid: 3958696
doi: 10.1155/2014/989721
Gompels, U. A. et al. Human cytomegalovirus infant infection adversely affects growth and development in maternally HIV-exposed and unexposed infants in Zambia. Clin. Infect. Dis. 54, 434–442 (2012).
pubmed: 22247303
pmcid: 3258277
doi: 10.1093/cid/cir837
Ramani, S. et al. Human milk oligosaccharides, milk microbiome and infant gut microbiome modulate neonatal rotavirus infection. Nat. Commun. 9, 5010 (2018).
pubmed: 30479342
pmcid: 6258677
doi: 10.1038/s41467-018-07476-4
Ismail, I. H. et al. Early gut colonization by Bifidobacterium breve and B. catenulatum differentially modulates eczema risk in children at high risk of developing allergic disease. Pediatr. Allergy Immunol. 27, 838–846 (2016).
pubmed: 27590263
doi: 10.1111/pai.12646
Henrick, B. M. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898.e11 (2021).
pubmed: 34143954
doi: 10.1016/j.cell.2021.05.030
Dai, D. L. Y. et al. Breastfeeding enrichment of B. longum subsp. infantis mitigates the effect of antibiotics on the microbiota and childhood asthma risk. Med 4, 92–112.e5 (2023).
Kiu, R. et al. Preterm infant-associated clostridium tertium, clostridium cadaveris, and clostridium paraputrificum strains: genomic and evolutionary insights. Genome Biol. Evol. 9, 2707–2714 (2017).
pubmed: 29044436
pmcid: 5647805
doi: 10.1093/gbe/evx210
Cheah, F. C., Lim, K. E. & Boo, N. Y. Clostridium tertium in cerebrospinal fluid of a premature neonate with necrotizing enterocolitis: contamination or real? Acta Paediatr. 90, 704–705 (2001).
pubmed: 11440108
doi: 10.1111/j.1651-2227.2001.tb02438.x
Sbihi, H. et al. Early-life cytomegalovirus infection is associated with gut microbiota perturbations and increased risk of atopy. Pediatr. Allergy Immunol. 33, e13658 (2022).
pubmed: 34467574
doi: 10.1111/pai.13658
Fowler, K. B. et al. Racial and ethnic differences in the prevalence of congenital cytomegalovirus infection. J. Pediatr. 200, 196–201.e1 (2018).
pubmed: 29784513
doi: 10.1016/j.jpeds.2018.04.043
Kenneson, A. & Cannon, M. J. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev. Med. Virol. 17, 253–276 (2007).
pubmed: 17579921
doi: 10.1002/rmv.535
Isganaitis, E. et al. Maternal obesity and the human milk metabolome: associations with infant body composition and postnatal weight gain. Am. J. Clin. Nutr. 110, 111–120 (2019).
pubmed: 30968129
pmcid: 6599743
doi: 10.1093/ajcn/nqy334
Whitaker, K. M. et al. Associations of maternal weight status before, during, and after pregnancy with inflammatory markers in breast milk. Obesity 25, 2092–2099 (2017).
pubmed: 28985033
doi: 10.1002/oby.22025
Fields, D. A. et al. Associations between human breast milk hormones and adipocytokines and infant growth and body composition in the first 6 months of life. Pediatr. Obes. 12, 78–85 (2017).
pubmed: 28160457
pmcid: 5540830
doi: 10.1111/ijpo.12182
Sadr Dadres, G. et al. Relationship of maternal weight status before, during, and after pregnancy with breast milk hormone concentrations. Obesity 27, 621–628 (2019).
pubmed: 30900412
doi: 10.1002/oby.22409
DeLuca, D. S. et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics 28, 1530–1532 (2012).
pubmed: 22539670
pmcid: 3356847
doi: 10.1093/bioinformatics/bts196
Jew, B. et al. Accurate estimation of cell composition in bulk expression through robust integration of single-cell information. Nat. Commun. 11, 1971 (2020).
pubmed: 32332754
pmcid: 7181686
doi: 10.1038/s41467-020-15816-6
Götting, J. et al. Human cytomegalovirus genome diversity in longitudinally collected breast milk samples. Front. Cell. Infect. Microbiol. 11, 664247 (2021).
pubmed: 33937103
pmcid: 8085339
doi: 10.3389/fcimb.2021.664247
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286
pmcid: 3322381
doi: 10.1038/nmeth.1923
Boppana, S. B. et al. Dried blood spot real-time polymerase chain reaction assays to screen newborns for congenital cytomegalovirus infection. JAMA 303, 1375–1382 (2010).
pubmed: 20388893
pmcid: 2997517
doi: 10.1001/jama.2010.423
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).
doi: 10.1111/j.2517-6161.1995.tb02031.x
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).
pubmed: 27141961
pmcid: 4987924
doi: 10.1093/nar/gkw377
Wolfs, D. et al. Brown fat-activating lipokine 12,13-diHOME in human milk is associated with infant adiposity. J. Clin. Endocrinol. Metab. 106, e943–e956 (2021).
pubmed: 33135728
doi: 10.1210/clinem/dgaa799
Leek, J. T. et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).
Krebs-Smith, S. M. et al. Update of the healthy eating index: HEI-2015. J. Acad. Nutr. Diet. 118, 1591–1602 (2018).
pubmed: 30146071
pmcid: 6719291
doi: 10.1016/j.jand.2018.05.021
R Core Team. R: a language and environment for statistical computing. http://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2024).
Al-Ghalith, G. A., Hillmann, B., Ang, K., Shields-Cutler, R. & Knights, D. SHI7 is a self-learning pipeline for multipurpose short-read DNA quality control. mSystems 3, e00202–e00217 (2018).
pubmed: 29719872
pmcid: 5915699
doi: 10.1128/mSystems.00202-17
Al-Ghalith, G. & Knights, D. BURST enables mathematically optimal short-read alignment for big data. bioRxiv https://doi.org/10.1101/2020.09.08.287128 (2020).
Beghini, F. et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife 10, e65088 (2021).
pubmed: 33944776
pmcid: 8096432
doi: 10.7554/eLife.65088
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
pubmed: 25402007
doi: 10.1038/nmeth.3176
Ye, Y. & Doak, T. G. A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes. PLoS Comput. Biol. 5, e1000465 (2009).
pubmed: 19680427
pmcid: 2714467
doi: 10.1371/journal.pcbi.1000465
Oksanen, J. et al. vegan: community ecology package. R package version 2.6-6.1 (2022).
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
doi: 10.18637/jss.v082.i13
Tahir, M. J. et al. Higher maternal diet quality during pregnancy and lactation is associated with lower infant weight-for-length, body fat percent, and fat mass in early postnatal life. Nutrients 11, 632 (2019).
pubmed: 30875943
pmcid: 6471184
doi: 10.3390/nu11030632
Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).
doi: 10.18637/jss.v048.i02
Dolan, A. et al. Genetic content of wild-type human cytomegalovirus. J. Gen. Virol. 85, 1301–1312 (2004).
pubmed: 15105547
doi: 10.1099/vir.0.79888-0