Exploring the biodegradability of candidate metallic intravascular stent materials using X-ray microfocus computed tomography: An in vitro study.

biodegradable stent high‐resolution microCT in vitro static immersion testing metallic alloy surface properties

Journal

Journal of biomedical materials research. Part B, Applied biomaterials
ISSN: 1552-4981
Titre abrégé: J Biomed Mater Res B Appl Biomater
Pays: United States
ID NLM: 101234238

Informations de publication

Date de publication:
Aug 2024
Historique:
revised: 07 03 2024
received: 31 08 2023
accepted: 08 07 2024
medline: 23 7 2024
pubmed: 23 7 2024
entrez: 23 7 2024
Statut: ppublish

Résumé

In vitro testing for evaluating degradation mode and rate of candidate biodegradable metals to be used as intravascular stents is crucial before going to in vivo animal models. In this study, we show that X-ray microfocus computed tomography (microCT) presents a key added value to visualize degradation mode and to evaluate degradation rate and material surface properties in 3D and at high resolution of large regions of interest. The in vitro degradation behavior of three candidate biodegradable stent materials was evaluated: pure iron (Fe), pure zinc (Zn), and a quinary Zn alloy (ZnAgCuMnZr). These metals were compared to a reference biostable cobaltchromium (CoCr) alloy. To compare the degradation mode and degradation rate evaluated with microCT, scanning electron microscopy (SEM) and inductively-coupled plasma (ICP) were included. We confirmed that Fe degrades very slowly but with desirable uniform surface corrosion. Zn degrades faster but exhibits localized deep pitting corrosion. The Zn alloy degrades at a similar rate as the pure Zn, but more homogeneously. However, the formation of deep internal dendrites was observed. Our study provides a detailed microCT-based comparison of essential surface and corrosion properties, with a structural characterization of the corrosion behavior, of different candidate stent materials in 3D in a non-destructive way.

Identifiants

pubmed: 39042645
doi: 10.1002/jbm.b.35452
doi:

Substances chimiques

Zinc J41CSQ7QDS
Alloys 0
Iron E1UOL152H7

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e35452

Subventions

Organisme : FSR project - Projets Fonds de Recherche Spécial Jeunes Académiques - Fédération Wallonie-Bruxelles
Organisme : Action de Recherche Concertée
ID : ARC 19/24-097
Organisme : SBO project of the Research Foundation Flanders
ID : S007219N
Organisme : Hercules Foundation
ID : AKUL 13/47
Organisme : Fonds de la Recherche Scientifique
ID : EQP - Tomo4D-U.N069.20

Informations de copyright

© 2024 Wiley Periodicals LLC.

Références

Brophy ML, Dong Y, Wu H, Rahman HNA, Song K, Chen H. Eating the dead to keep atherosclerosis at bay. Front Cardiovasc Med. 2017;4:2. doi:10.3389/fcvm.2017.00002
S. N, L. R, D. OD. Abdominal aortic aneurysm, vascular surgery: cases. Quest Comment. 2005;365:1577‐1589. doi:10.1016/S0140‐6736(05)66459‐8
Borhani S, Hassanajili S, Ahmadi Tafti SH, Rabbani S. Cardiovascular stents: overview, evolution, and next generation. Prog Biomater. 2018;7:175‐205. doi:10.1007/s40204‐018‐0097‐y
Mostaed E, Sikora‐Jasinska M, Ardakani MS, et al. Towards revealing key factors in mechanical instability of bioabsorbable Zn‐based alloys for intended vascular stenting. Acta Biomater. 2020;105:319‐335. doi:10.1016/j.actbio.2020.01.028
Verhaegen C, Lepropre S, Octave M, et al. Bioreactivity of stent material: in vitro impact of new twinning‐induced plasticity steel on platelet activation. J Biomater Nanobiotechnol. 2019;10:175‐189. doi:10.4236/jbnb.2019.104010
Bowen PK, Shearier ER, Zhao S, et al. Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn‐alloys. Adv Healthc Mater. 2016;5:1121‐1140. doi:10.1002/adhm.201501019
Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R Rep. 2014;77:1‐34. doi:10.1016/j.mser.2014.01.001
Moravej M, Mantovani D. Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int J Mol Sci. 2011;12:4250‐4270. doi:10.3390/ijms12074250
Walker EK, Nauman EA, Allain JP, Stanciu LA. An in vitro model for preclinical testing of thrombogenicity of resorbable metallic stents. J Biomed Mater Res A. 2015;103:2118‐2125. doi:10.1002/jbm.a.35348
Liu B, Zheng YF. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater. 2011;7:1407‐1420. doi:10.1016/j.actbio.2010.11.001
Liu Y, Wu Y, Bian D, et al. Study on the Mg‐Li‐Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells. Acta Biomater. 2017;62:418‐433. doi:10.1016/j.actbio.2017.08.021
Yahata C, Mochizuki A. Platelet compatibility of magnesium alloys. Mater Sci Eng C. 2017;78:1119‐1124. doi:10.1016/j.msec.2017.04.153
Feyerabend F, Wendel HP, Mihailova B, et al. Blood compatibility of magnesium and its alloys. Acta Biomater. 2015;25:384‐394. doi:10.1016/j.actbio.2015.07.029
Peuster M, Wohlsein P, Brügmann M, et al. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal – results 6‐18 months after implantation into New Zealand white rabbits. Heart. 2001;86:563‐569. doi:10.1136/heart.86.5.563
Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C. Long‐term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials. 2006;27:4955‐4962. doi:10.1016/j.biomaterials.2006.05.029
Waksman R, Pakala R, Baffour R, Seabron R, Hellinga D, Tio FO. Short‐term effects of biocorrodible iron stents in porcine coronary arteries. J Interv Cardiol. 2008;21:15‐20. doi:10.1111/j.1540‐8183.2007.00319.x
Noviana D, Paramitha D, Ulum MF, Hermawan H. The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats. J Orthop Translat. 2016;5:9‐15. doi:10.1016/j.jot.2015.08.003
Jun M, Nan Z, Lexxus B, Zhu D. Bio‐adaption between magnesium alloy stent and the blood vessel: a review. J Mater Sci Technol. 2017;32(9):815‐826. doi:10.1016/j.jmst.2015.12.018
Chen K, Gu X, Sun H, et al. Fluid‐induced corrosion behavior of degradable zinc for stent application. J Mater Sci Technol. 2021;91:134‐147. doi:10.1016/j.jmst.2021.02.050
Oliver AA, Guillory RJ, Flom KL, et al. Analysis of vascular inflammation against Bioresorbable Zn‐Ag‐based alloys. ACS Appl Bio Mater. 2020;3:6779‐6789. doi:10.1021/acsabm.0c00740
Yue R, Huang H, Ke G, et al. Microstructure, mechanical properties and in vitro degradation behavior of novel Zn‐Cu‐Fe alloys. Mater Charact. 2017;134:114‐122. doi:10.1016/j.matchar.2017.10.015
Kirkland NT, Birbilis N, Staiger MP. Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater. 2012;8:925‐936. doi:10.1016/j.actbio.2011.11.014
Zhao H, Van Humbeeck J, Sohier J, De Scheerder I. Electrochemical polishing of 316L stainless steel slotted tube coronary stents: an investigation of material removal and surface roughness. J Mater Sci Mater Med. 2003;8:70‐80. doi:10.1023/A:1019831808503
De Scheerder I, Sohier J, Wang K, et al. Metallic surface treatment using electrochemical polishing decreases thrombogenicity and neointimal hyperplasia of coronary stents. J Interv Cardiol. 2000;13:179‐185. doi:10.1111/j.1540‐8183.2000.tb00286.x
Butler DL. In: Li D, ed. Surface Roughness Measurement BT – Encyclopedia of Microfluidics and Nanofluidics. Springer US; 2008:1945‐1949. doi:10.1007/978‐0‐387‐48998‐8_1506
Wang J, Liu L, Wu Y, et al. Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration. Acta Biomater. 2017;50:546‐555. doi:10.1016/j.actbio.2016.12.039
Yang H, Wang C, Liu C, et al. Evolution of the degradation mechanism of pure zinc stent in the one‐year study of rabbit abdominal aorta model. Biomaterials. 2017;145:92‐105. doi:10.1016/j.biomaterials.2017.08.022
Zhou C, Li HF, Yin YX, et al. Long‐term in vivo study of biodegradable Zn‐Cu stent: a 2‐year implantation evaluation in porcine coronary artery. Acta Biomater. 2019;97:657‐670. doi:10.1016/j.actbio.2019.08.012
Lin S, Ran X, Yan X, et al. Corrosion behavior and biocompatibility evaluation of a novel zinc‐based alloy stent in rabbit carotid artery model. J Biomed Mater Res B Appl Biomater. 2019;107:1814‐1823. doi:10.1002/jbm.b.34274
Fu J, Su Y, Qin YX, Zheng Y, Wang Y, Zhu D. Evolution of metallic cardiovascular stent materials: a comparative study among stainless steel, magnesium and zinc. Biomaterials. 2020;230:119641. doi:10.1016/j.biomaterials.2019.119641
Bartosch M, Peters H, Koerner A, et al. New methods for in vivo degradation testing of future stent materials. Mater Corros. 2018;69:156‐166. doi:10.1002/maco.201709521
Pierson D, Edick J, Tauscher A, et al. A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials. J Biomed Mater Res B Appl Biomater. 2012;100 B:58‐67. doi:10.1002/jbm.b.31922
ASTM G31‐72. Standard Practice for Laboratory Immersion Corrosion Testing of Metals. 2004. doi:10.1520/G0031‐72R04
Maes A. Cryogenic contrast‐enhanced microCT enables nondestructive 3D quantitative histopathology of soft biological tissues. Github; 2020. doi:10.5281/zenodo.7034265
Kerckhofs G, Pyka G, Moesen M, Van Bael S, Schrooten J, Wevers M. High‐resolution microfocus X‐ray computed tomography for 3d surface roughness measurements of additive manufactured porous materials. Adv Eng Mater. 2013;15:153‐158. doi:10.1002/adem.201200156
He J, Li DW, He FL, et al. A study of degradation behaviour and biocompatibility of Zn—Fe alloy prepared by electrodeposition. Mater Sci Eng C. 2020;117:111295. doi:10.1016/j.msec.2020.111295
Bowen PK, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater. 2013;25:2577‐2582. doi:10.1002/adma.201300226
Zhao S, Seitz JM, Eifler R, et al. Zn‐Li alloy after extrusion and drawing: structural, mechanical characterization, and biodegradation in abdominal aorta of rat. Mater Sci Eng C. 2017;76:301‐312. doi:10.1016/j.msec.2017.02.167
Dibra A, Kastrati A, Mehilli J, et al. Influence of stent surface topography on the outcomes of patients undergoing coronary stenting: a randomized double‐blind controlled trial. Catheter Cardiovasc Interv. 2005;65:374‐380. doi:10.1002/ccd.20400
Guillory RJ II, Mostaed E, Oliver AA, et al. Improved biocompatibility of Zn–Ag‐based stent materials by microstructure refinement. Acta Biomater. 2022;145:416‐426. doi:10.1016/j.actbio.2022.03.047
Liu X, Sun J, Zhou F, et al. Micro‐alloying with Mn in Zn‐Mg alloy for future biodegradable metals application. Mater Des. 2016;94:95‐104. doi:10.1016/j.matdes.2015.12.128
Li HF, Xie XH, Zheng YF, et al. Development of biodegradable Zn‐1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci Rep. 2015;5:10719. doi:10.1038/srep10719
Huang T, Cheng J, Zheng YF. In vitro degradation and biocompatibility of Fe‐Pd and Fe‐Pt composites fabricated by spark plasma sintering. Mater Sci Eng C. 2014;35:43‐53. doi:10.1016/j.msec.2013.10.023
Cheng J, Zheng YF. In vitro study on newly designed biodegradable Fe‐X composites (X = W, CNT) prepared by spark plasma sintering. J Biomed Mater Res B Appl Biomater. 2013;101:485‐497. doi:10.1002/jbm.b.32783
Huang T, Cheng Y, Zheng Y. In vitro studies on silver implanted pure iron by metal vapor vacuum arc technique. Colloids Surf B Biointerfaces. 2016;142:20‐29. doi:10.1016/j.colsurfb.2016.01.065
Bowen PK, Seitz JM, Guillory RJ, et al. Evaluation of wrought Zn–Al alloys (1, 3, and 5 wt % Al) through mechanical and in vivo testing for stent applications. J Biomed Mater Res B Appl Biomater. 2018;106:245‐258. doi:10.1002/jbm.b.33850
Guillory RJ II, Sikora‐Jasinska M, Drelich JW, Goldman J. In vitro corrosion and in vivo response to zinc implants with electropolished and anodized surfaces. ACS Appl Mater Interfaces. 2019;11:19884‐19893. doi:10.1021/acsami.9b05370
Guillory RJ II, Oliver AA, Davis E, Earley EJ, Jaroslaw W, Goldman J. Preclinical in vivo evaluation and screening of zinc‐based degradable metals for endovascular stents. Jom. 2021;71:1436‐1446. doi:10.1007/s11837‐019‐03371‐5

Auteurs

Lisa Leyssens (L)

Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium.
Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Woluwe-Saint-Lambert, Belgium.

Noémie Lapraille (N)

Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium.

Grzegorz Pyka (G)

Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium.
Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Woluwe-Saint-Lambert, Belgium.

Pascal J Jacques (PJ)

Materials and Process Engineering, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium.

Sandrine Horman (S)

Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, UCLouvain, Woluwe-Saint-Lambert, Belgium.

Jeremy Goldman (J)

Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, USA.

Greet Kerckhofs (G)

Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium.
Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Woluwe-Saint-Lambert, Belgium.
Department of Materials Engineering, KU Leuven, Leuven, Belgium.
Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.

Articles similaires

Psoriasis Humans Magnesium Zinc Trace Elements

Hemiarthroplasty in young patients.

Hazimah Mahmud, Dong Wang, Andra Topan-Rat et al.
1.00
Humans Male Hemiarthroplasty Middle Aged Aged
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction

Classifications MeSH