Vγ9Vδ2 T cells recognize butyrophilin 2A1 and 3A1 heteromers.


Journal

Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354

Informations de publication

Date de publication:
16 Jul 2024
Historique:
received: 13 09 2023
accepted: 11 06 2024
medline: 17 7 2024
pubmed: 17 7 2024
entrez: 16 7 2024
Statut: aheadofprint

Résumé

Butyrophilin (BTN) molecules are emerging as key regulators of T cell immunity; however, how they trigger cell-mediated responses is poorly understood. Here, the crystal structure of a gamma-delta T cell antigen receptor (γδTCR) in complex with BTN2A1 revealed that BTN2A1 engages the side of the γδTCR, leaving the apical TCR surface bioavailable. We reveal that a second γδTCR ligand co-engages γδTCR via binding to this accessible apical surface in a BTN3A1-dependent manner. BTN2A1 and BTN3A1 also directly interact with each other in cis, and structural analysis revealed formation of W-shaped heteromeric multimers. This BTN2A1-BTN3A1 interaction involved the same epitopes that BTN2A1 and BTN3A1 each use to mediate the γδTCR interaction; indeed, locking BTN2A1 and BTN3A1 together abrogated their interaction with γδTCR, supporting a model wherein the two γδTCR ligand-binding sites depend on accessibility to cryptic BTN epitopes. Our findings reveal a new paradigm in immune activation, whereby γδTCRs sense dual epitopes on BTN complexes.

Identifiants

pubmed: 39014161
doi: 10.1038/s41590-024-01892-z
pii: 10.1038/s41590-024-01892-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Department of Health | National Health and Medical Research Council (NHMRC)
ID : 1184906
Organisme : Department of Health | National Health and Medical Research Council (NHMRC)
ID : 1165467
Organisme : Department of Health | National Health and Medical Research Council (NHMRC)
ID : 1117766
Organisme : Department of Health | National Health and Medical Research Council (NHMRC)
ID : 2008913
Organisme : Department of Health | National Health and Medical Research Council (NHMRC)
ID : 1194263
Organisme : Cancer Council Victoria
ID : 1126866
Organisme : Department of Education and Training | Australian Research Council (ARC)
ID : DP230102753
Organisme : Department of Education and Training | Australian Research Council (ARC)
ID : CE140100011
Organisme : Department of Education and Training | Australian Research Council (ARC)
ID : DE210100705

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Ribot, J. C., Lopes, N. & Silva-Santos, B. γδ T cells in tissue physiology and surveillance. Nat. Rev. Immunol. 21, 221–232 (2021).
doi: 10.1038/s41577-020-00452-4 pubmed: 33057185
Constant, P. et al. Stimulation of human gamma delta T cells by nonpeptidic mycobacterial ligands. Science 264, 267–270 (1994).
doi: 10.1126/science.8146660 pubmed: 8146660
Tanaka, Y. et al. Natural and synthetic non-peptide antigens recognized by human gamma delta T cells. Nature 375, 155–158 (1995).
doi: 10.1038/375155a0 pubmed: 7753173
Tyler, C. J., Doherty, D. G., Moser, B. & Eberl, M. Human Vγ9/Vδ2 T cells: innate adaptors of the immune system. Cell Immunol. 296, 10–21 (2015).
doi: 10.1016/j.cellimm.2015.01.008 pubmed: 25659480
Hoeres, T., Smetak, M., Pretscher, D. & Wilhelm, M. Improving the efficiency of Vγ9Vδ2 T-cell immunotherapy in cancer. Front. Immunol. 9, 800 (2018).
doi: 10.3389/fimmu.2018.00800 pubmed: 29725332 pmcid: 5916964
Di Marco Barros, R. et al. Epithelia use butyrophilin-like molecules to shape organ-specific γδ T cell compartments. Cell 167, 203–218 (2016).
doi: 10.1016/j.cell.2016.08.030 pubmed: 27641500 pmcid: 5037318
Melandri, D. et al. The γδTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nat. Immunol. 19, 1352–1365 (2018).
doi: 10.1038/s41590-018-0253-5 pubmed: 30420626 pmcid: 6874498
Boyden, L. M. et al. Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal γδ T cells. Nat. Genet. 40, 656–662 (2008).
doi: 10.1038/ng.108 pubmed: 18408721 pmcid: 4167720
Jandke, A. et al. Butyrophilin-like proteins display combinatorial diversity in selecting and maintaining signature intraepithelial γδ T cell compartments. Nat. Commun. 11, 3769 (2020).
doi: 10.1038/s41467-020-17557-y pubmed: 32724083 pmcid: 7387338
Sandstrom, A. et al. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vγ9Vδ2 T cells. Immunity 40, 490–500 (2014).
doi: 10.1016/j.immuni.2014.03.003 pubmed: 24703779 pmcid: 4028361
Rigau, M. et al. Butyrophilin 2A1 is essential for phosphoantigen reactivity by γδ T cells. Science 367, eaay5516 (2020).
doi: 10.1126/science.aay5516 pubmed: 31919129
Karunakaran, M. M. et al. Butyrophilin-2A1 directly binds germline-encoded regions of the Vγ9Vδ2 TCR and is essential for phosphoantigen sensing. Immunity 52, 487–498.e6 (2020).
doi: 10.1016/j.immuni.2020.02.014 pubmed: 32155411 pmcid: 7083227
Willcox, C. R. et al. Butyrophilin-like 3 directly binds a human Vγ4+ T cell receptor using a modality distinct from clonally-restricted antigen. Immunity 51, 813–825 (2019).
doi: 10.1016/j.immuni.2019.09.006 pubmed: 31628053 pmcid: 6868513
Vyborova, A. et al. γ9δ2T cell diversity and the receptor interface with tumor cells. J. Clin. Invest. 130, 4637–4651 (2020).
doi: 10.1172/JCI132489 pubmed: 32484803 pmcid: 7456241
Wang, H., Fang, Z. & Morita, C. T. Vγ2Vδ2 T cell receptor recognition of prenyl pyrophosphates is dependent on all CDRs. J. Immunol. 184, 6209–6222 (2010).
doi: 10.4049/jimmunol.1000231 pubmed: 20483784
Harly, C. et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. Blood 120, 2269–2279 (2012).
doi: 10.1182/blood-2012-05-430470 pubmed: 22767497 pmcid: 3679641
Palakodeti, A. et al. The molecular basis for modulation of human Vγ9Vδ2 T cell responses by CD277/butyrophilin-3 (BTN3A)-specific antibodies. J. Biol. Chem. 287, 32780–32790 (2012).
doi: 10.1074/jbc.M112.384354 pubmed: 22846996 pmcid: 3463320
Karunakaran, M. M. et al. A distinct topology of BTN3A IgV and B30.2 domains controlled by juxtamembrane regions favors optimal human γδ T cell phosphoantigen sensing. Nat. Commun. 14, 7617 (2023).
doi: 10.1038/s41467-023-41938-8 pubmed: 37993425 pmcid: 10665462
Gu, S. et al. Phosphoantigen-induced conformational change of butyrophilin 3A1 (BTN3A1) and its implication on Vγ9Vδ2 T cell activation. Proc. Natl Acad. Sci. USA 114, E7311–E7320 (2017).
doi: 10.1073/pnas.1707547114 pubmed: 28807997 pmcid: 5584448
Vantourout, P. et al. Heteromeric interactions regulate butyrophilin (BTN) and BTN-like molecules governing γδ T cell biology. Proc. Natl Acad. Sci. USA 115, 1039–1044 (2018).
doi: 10.1073/pnas.1701237115 pubmed: 29339503 pmcid: 5798315
Cano, C. E. et al. BTN2A1, an immune checkpoint targeting Vγ9Vδ2 T cell cytotoxicity against malignant cells. Cell Rep. 36, 109359 (2021).
doi: 10.1016/j.celrep.2021.109359 pubmed: 34260935
Hsiao, C.-H. C., Nguyen, K., Jin, Y., Vinogradova, O. & Wiemer, A. J. Ligand-induced interactions between butyrophilin 2A1 and 3A1 internal domains in the HMBPP receptor complex. Cell Chem. Biol. 29, 985–995 (2022).
doi: 10.1016/j.chembiol.2022.01.004 pubmed: 35081362
Yuan, L. et al. Phosphoantigens glue butyrophilin 3A1 and 2A1 to activate Vγ9Vδ2 T cells. Nature 621, 840–848 (2023).
doi: 10.1038/s41586-023-06525-3 pubmed: 37674084 pmcid: 10533412
Wang, H. et al. Conservation of nonpeptide antigen recognition by Rhesus monkey Vγ2Vδ2 T cells. J. Immunol. 170, 3696–3706 (2003).
doi: 10.4049/jimmunol.170.7.3696 pubmed: 12646635
Ding, Y. H. et al. Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino acids. Immunity 8, 403–411 (1998).
doi: 10.1016/S1074-7613(00)80546-4 pubmed: 9586631
Uldrich, A. P. et al. CD1d-lipid antigen recognition by the γδ TCR. Nat. Immunol. 14, 1137–1145 (2013).
doi: 10.1038/ni.2713 pubmed: 24076636
Holst, J. et al. Generation of T-cell receptor retrogenic mice. Nat. Protoc. 1, 406–417 (2006).
doi: 10.1038/nprot.2006.61 pubmed: 17406263
Le Nours, J. et al. Atypical natural killer T-cell receptor recognition of CD1d-lipid antigens. Nat. Commun. 7, 10570 (2016).
doi: 10.1038/ncomms10570 pubmed: 26875526 pmcid: 4756352
Kim, H. K. et al. Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity. Nat. Biotechnol. 36, 239–241 (2018).
doi: 10.1038/nbt.4061 pubmed: 29431740
Moll, J. R., Ruvinov, S. B., Pastan, I. & Vinson, C. Designed heterodimerizing leucine zippers with a ranger of pIs and stabilities up to 10
doi: 10.1110/ps.39401 pubmed: 11344333 pmcid: 2374140
Aricescu, A. R., Lu, W. & Jones, E. Y. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D. Biol. Crystallogr. 62, 1243–1250 (2006).
doi: 10.1107/S0907444906029799 pubmed: 17001101
Aragao, D. et al. MX2: a high-flux undulator microfocus beamline serving both the chemical and macromolecular crystallography communities at the Australian Synchrotron. J. Synchrotron Radiat. 25, 885–891 (2018).
doi: 10.1107/S1600577518003120 pubmed: 29714201 pmcid: 5929359
Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D. Biol. Crystallogr. 67, 271–281 (2011).
doi: 10.1107/S0907444910048675 pubmed: 21460445 pmcid: 3069742
Eichinger, A., Neumaier, I. & Skerra, A. The extracellular region of bovine milk butyrophilin exhibits closer structural similarity to human myelin oligodendrocyte glycoprotein than to immunological BTN family receptors. Biol. Chem. 402, 1187–1202 (2021).
doi: 10.1515/hsz-2021-0122 pubmed: 34342946
Allison, T. J., Winter, C. C., Fournie, J. J., Bonneville, M. & Garboczi, D. N. Structure of a human gammadelta T-cell antigen receptor. Nature 411, 820–824 (2001).
doi: 10.1038/35081115 pubmed: 11459064
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).
doi: 10.1107/S0907444909052925 pubmed: 20124702 pmcid: 2815670
Smart, O. S. et al. Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER. Acta Crystallogr. D. Biol. Crystallogr. 68, 368–380 (2012).
doi: 10.1107/S0907444911056058 pubmed: 22505257 pmcid: 3322596
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D. Biol. Crystallogr. 67, 235–242 (2011).
doi: 10.1107/S0907444910045749 pubmed: 21460441 pmcid: 3069738
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
doi: 10.1038/s41586-021-03819-2 pubmed: 34265844 pmcid: 8371605
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
doi: 10.1038/nmeth.4169 pubmed: 28165473

Auteurs

Thomas S Fulford (TS)

Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.

Caroline Soliman (C)

Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.

Rebecca G Castle (RG)

Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.

Marc Rigau (M)

Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
Institute of Molecular Medicine and Experimental Immunology, Rheinische Friedrichs-Wilhelms University of Bonn, Bonn, Germany.
Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.

Zheng Ruan (Z)

Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.

Olan Dolezal (O)

Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Parkville, Victoria, Australia.

Rebecca Seneviratna (R)

Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.

Hamish G Brown (HG)

Ian Holmes Imaging Centre, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.

Eric Hanssen (E)

Ian Holmes Imaging Centre, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
ARC Industrial Transformation Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Melbourne, Parkville, Victoria, Australia.

Andrew Hammet (A)

CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia.

Shihan Li (S)

Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.

Samuel J Redmond (SJ)

Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.

Amy Chung (A)

Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.

Michael A Gorman (MA)

Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.

Michael W Parker (MW)

Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
ARC Industrial Transformation Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Melbourne, Parkville, Victoria, Australia.
St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.

Onisha Patel (O)

The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.

Thomas S Peat (TS)

Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Parkville, Victoria, Australia.

Janet Newman (J)

Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Parkville, Victoria, Australia.

Andreas Behren (A)

Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia.
Department of Medicine, University of Melbourne, Parkville, Victoria, Australia.

Nicholas A Gherardin (NA)

Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.

Dale I Godfrey (DI)

Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia. godfrey@unimelb.edu.au.

Adam P Uldrich (AP)

Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia. auldrich@unimelb.edu.au.
Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. auldrich@unimelb.edu.au.

Classifications MeSH