Radiation exposure and screening yield by digital breast tomosynthesis compared to mammography: results of the TOSYMA Trial breast density related.
Breast cancer detection
Breast density
Digital breast tomosynthesis
Mammography screening
Radiation exposure
Journal
European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774
Informations de publication
Date de publication:
16 Jul 2024
16 Jul 2024
Historique:
received:
22
01
2024
accepted:
25
04
2024
medline:
16
7
2024
pubmed:
16
7
2024
entrez:
16
7
2024
Statut:
aheadofprint
Résumé
The randomized TOmosynthesis plus SYnthesized MAmmography (TOSYMA) screening trial has shown that digital breast tomosynthesis plus synthesized mammography (DBT + SM) is superior to digital mammography (DM) in invasive breast cancer detection varying with breast density. On the other hand, the overall average glandular dose (AGD) of DBT is higher than that of DM. Comparing the DBT + SM and DM trial arm, we analyzed here the mean AGD and their determinants per breast density category and related them to the respective invasive cancer detection rates (iCDR). TOSYMA screened 99,689 women aged 50 to 69 years. Compression force, resulting breast thickness, the calculated AGD obtained from each mammography device, and previously published iCDR were used for comparisons across breast density categories in the two trial arms. There were 196,622 exposures of 49,227 women (DBT + SM) and 197,037 exposures of 49,132 women (DM) available for analyses. Mean breast thicknesses declined from breast density category A (fatty) to D (extremely dense) in both trial arms. However, while the mean AGD in the DBT + SM arm declined concomitantly from category A (2.41 mGy) to D (1.89 mGy), it remained almost unchanged in the DM arm (1.46 and 1.51 mGy, respectively). In relative terms, the AGD elevation in the DBT + SM arm (64.4% (A), by 44.5% (B), 27.8% (C), and 26.0% (D)) was lowest in dense breasts where, however, the highest iCDR were observed. Women with dense breasts may specifically benefit from DBT + SM screening as high cancer detection is achieved with only moderate AGD elevations. TOSYMA suggests a favorable constellation for screening with digital breast tomosynthesis plus synthesized mammography (DBT + SM) in dense breasts when weighing average glandular dose elevation against raised invasive breast cancer detection rates. There is potential for density-, i.e., risk-adapted population-wide breast cancer screening with DBT + SM. Breast thickness declines with visually increasing density in digital mammography (DM) and digital breast tomosynthesis (DBT). Average glandular doses of DBT decrease with increasing density; digital mammography shows lower and more constant values. With the smallest average glandular dose difference in dense breasts, DBT plus SM had the highest difference in invasive breast cancer detection rates.
Identifiants
pubmed: 39012526
doi: 10.1007/s00330-024-10847-9
pii: 10.1007/s00330-024-10847-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Investigateurs
Walter Heindel
(W)
Stefanie Weigel
(S)
Joachim Gerß
(J)
Hans-Werner Hense
(HW)
Gerold Hecht
(G)
Alexander Sommer
(A)
Horst Lenzen
(H)
Jörg Czwoydzinski
(J)
Informations de copyright
© 2024. The Author(s).
Références
Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71:209–249
doi: 10.3322/caac.21660
pubmed: 33538338
Lauby-Secretan B, Scoccianti C, Loomis D et al (2015) International Agency for Research on Cancer Handbook Working Group. Breast-cancer screening-viewpoint of the IARC Working Group. N Engl J Med 372:2353–2358
doi: 10.1056/NEJMsr1504363
pubmed: 26039523
Zielonke N, Gini A, Jansen EEL et al (2020) Evidence for reducing cancer-specific mortality due to screening for breast cancer in Europe: a systematic review. Eur J Cancer 127:191–206
doi: 10.1016/j.ejca.2019.12.010
pubmed: 31932175
Boyd NF, Guo H, Martin LJ et al (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356:227–236
doi: 10.1056/NEJMoa062790
pubmed: 17229950
Kerlikowske K, Zhu W, Tosteson AN et al (2015) Identifying women with dense breasts at high risk for interval cancer: a cohort study. Ann Intern Med 162:673–681
doi: 10.7326/M14-1465
pubmed: 25984843
pmcid: 4443857
Weigel S, Heindel W, Heidrich J, Hense HW, Heidinger O (2017) Digital mammography screening: sensitivity of the programme dependent on breast density. Eur Radiol 27:2744–2751
doi: 10.1007/s00330-016-4636-4
pubmed: 27822617
Phi XA, Tagliafico A, Houssami N, Greuter MJW, de Bock GH (2018) Digital breast tomosynthesis for breast cancer screening and diagnosis in women with dense breasts—a systematic review and meta-analysis. BMC Cancer 18:380
doi: 10.1186/s12885-018-4263-3
pubmed: 29615072
pmcid: 5883365
Chong A, Weinstein SP, McDonald ES, Conant EF (2019) Digital breast tomosynthesis: concepts and clinical practice. Radiology 292:1–14
doi: 10.1148/radiol.2019180760
pubmed: 31084476
Lee CH, Destounis SV, Friedewald SM, Newell MS (2019) Digital Breast Tomosynthesis (DBT) Guidance—a supplement to ACR BI-RADS Mammography 2013. Available via https://www.acr.org/-/media/ACR/Files/RADS/BI-RADS/BI-RADS-Digital-Breast-Tomosynthesis-Supplement.pdf . Accessed 17 Dec 2022
Heindel W, Weigel S, Gerß J et al (2022) Digital breast tomosynthesis plus synthesized mammography versus digital screening mammography for the detection of invasive breast cancer (TOSYMA): a multicenter, open-label, randomised, controlled, superiority trial. Lancet Oncol 23:601–611
doi: 10.1016/S1470-2045(22)00194-2
pubmed: 35427470
Weigel S, Heindel W, Hense HW, Decker T, Gerß J, Kerschke L, TOSYMA Screening Trial Study Group (2023) Breast density and breast cancer screening with digital breast tomosynthesis: a TOSYMA trial subanalysis. Radiology 306:e221006
doi: 10.1148/radiol.221006
pubmed: 36194110
Weigel S, Heindel W, Decker T et al (2023) Digital breast tomosynthesis versus digital mammography for detection of early-stage cancers stratified by grade: a TOSYMA subanalysis. Radiology 309:e231533
doi: 10.1148/radiol.231533
pubmed: 38051184
Perry N, Broeders M, de Wolf C, Törnberg S, Holland R, von Karsa L (2006) European guidelines for quality assurance in breast cancer screening and diagnosis. 4th edn. Office for Official Publications of the European Communities, Luxembourg
Weigel S, Gerss J, Hense HW et al (2018) Digital breast tomosynthesis plus synthesised images versus standard full-field digital mammography in population-based screening (TOSYMA): protocol of a randomised controlled trial. BMJ Open 8:e020475
doi: 10.1136/bmjopen-2017-020475
pubmed: 29764880
pmcid: 5961594
Dance DR, Skinner CL, Young KC, Beckett JR, Kotre CJ (2020) Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol. Phys Med Biol 45:3225–3240
doi: 10.1088/0031-9155/45/11/308
Dance DR, Young KC, van Engen RE (2011) Estimation of mean glandular dose for breast tomosynthesis: factors for use with the UK, European and IAEA breast dosimetry protocols. Phys Med Biol 56:453–457
doi: 10.1088/0031-9155/56/2/011
pubmed: 21191150
D’Orsi CJ, Sickles EA, Mendelson EB et al (2013) ACR BI-RADS Atlas, Breast Imaging Reporting and Data System, 5th edn. American College of Radiology, Reston, VA
Wasserstein RL, Lazar NA (2016) The ASA’s statement on p-values: context, process, and purpose. Am Stat 70:129–133. https://doi.org/10.1080/00031305.2016.1154108
doi: 10.1080/00031305.2016.1154108
Amrhein V, Greenland S, McShane BB (2019) Scientists rise up against statistical significance. Nature 567:305–307
doi: 10.1038/d41586-019-00857-9
pubmed: 30894741
Moshina N, Roman M, Waade GG, Sebuødegård S, Ursin G, Hofvind S (2018) Breast compression parameters and mammographic density in the Norwegian Breast Cancer Screening Programme. Eur Radiol 28:1662–1672
doi: 10.1007/s00330-017-5104-5
pubmed: 29098437
Waade GG, Highnam R, Hauge IHR et al (2016) Impact of errors in recorded compressed breast thickness measurements on volumetric density classification using volpara v1.5.0 software. Med Phys 43:2870–2876
doi: 10.1118/1.4948503
pubmed: 27277035
Waade GG, Hofvind S, Thompson JD, Highnam R, Hogg P (2017) Development of a phantom to test fully automated breast density software—a work in progress. Radiography (Lond) 23:e14–e19. https://doi.org/10.1016/j.radi.2016.09.003
doi: 10.1016/j.radi.2016.09.003
pubmed: 28290354
İdil Soylu A, Öztürk M, Polat AV (2021) The effect of breast size and density in Turkish women on radiation dose in full-field digital mammography. Eur J Breast Health 17:315–321. https://doi.org/10.4274/ejbh.galenos.2021.6285
doi: 10.4274/ejbh.galenos.2021.6285
pubmed: 34651109
pmcid: 8496124
Olson JE, Sellers TA, Scott CG et al (2012) The influence of mammogram acquisition on the mammographic density and breast cancer association in the mayo mammography health study cohort. Breast Cancer Res 14:R147. https://doi.org/10.1186/bcr3357
doi: 10.1186/bcr3357
pubmed: 23152984
pmcid: 3701143
Østerås BH, Skaane P, Gullien R, Martinsen ACT (2018) Average glandular dose in paired digital mammography and digital breast tomosynthesis acquisitions in a population based screening program: effects of measuring breast density, air kerma and beam quality. Phys Med Biol 63:035006
doi: 10.1088/1361-6560/aaa614
pubmed: 29311416
Bouwman RW, van Engen RE, Young KC et al (2015) Average glandular dose in digital mammography and digital breast tomosynthesis: comparison of phantom and patient data. Phys Med Biol 60:7893–7907
doi: 10.1088/0031-9155/60/20/7893
pubmed: 26407015
Gennaro G, Bernardi D, Houssami N (2018) Radiation dose with digital breast tomosynthesis compared to digital mammography: per-view analysis. Eur Radiol 28:573–581. https://doi.org/10.1007/s00330-017-5024-4
doi: 10.1007/s00330-017-5024-4
pubmed: 28819862
Alshafeiy TI, Wadih A, Nicholson BT et al (2017) Comparison between digital and synthetic 2D mammograms in breast density interpretation. AJR Am J Roentgenol 209:W36–W41
doi: 10.2214/AJR.16.16966
pubmed: 28504593
Yang K, Abbey CK, Chou SS et al (2022) Power spectrum analysis of breast parenchyma with digital breast tomosynthesis images in a longitudinal screening cohort from two vendors. Acad Radiol 29:841–850
doi: 10.1016/j.acra.2021.08.014
pubmed: 34563442
Bekanntmachung der aktualisierten diagnostischen Referenzwerte für diagnostische und interventionelle Röntgenanwendungen. vom: 17.11.2022, Bundesamt für Strahlenschutz; BAnz AT 11.01.2023 B11
National Research Council (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII Phase 2. Committee to assess health risks from exposure to low levels of ionizing radiation. 422 The National Academies Press, Washington, DC
Nekolla EA, Brix G, Griebel J (2022) Lung cancer screening with low-dose CT: radiation risk and benefit-risk assessment for different screening scenarios. Diagnostics (Basel) 12:364
doi: 10.3390/diagnostics12020364
pubmed: 35204455
Canelo-Aybar C, Ferreira DS, Ballesteros M et al (2021) Benefits and harms of breast cancer mammography screening for women at average risk of breast cancer: a systematic review for the European Commission Initiative on Breast Cancer. J Med Screen 28:389–404
doi: 10.1177/0969141321993866
pubmed: 33632023
Pattacini P, Nitrosi A, Giorgi Rossi P et al (2022) A randomized trial comparing breast cancer incidence and interval cancers after tomosynthesis plus mammography versus mammography alone. Radiology 1:211132
Brandt KR, Scott CG, Ma L et al (2016) Comparison of clinical and automated breast density measurements: implications for risk prediction and supplemental screening. Radiology 279:710–719. https://doi.org/10.1148/radiol.2015151261
doi: 10.1148/radiol.2015151261
pubmed: 26694052