Actinium chelation and crystallization in a macromolecular scaffold.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
15 Jul 2024
Historique:
received: 08 02 2024
accepted: 27 06 2024
medline: 16 7 2024
pubmed: 16 7 2024
entrez: 15 7 2024
Statut: epublish

Résumé

Targeted alpha therapy (TAT) pairs the specificity of antigen targeting with the lethality of alpha particles to eradicate cancerous cells. Actinium-225 [

Identifiants

pubmed: 39009580
doi: 10.1038/s41467-024-50017-5
pii: 10.1038/s41467-024-50017-5
doi:

Substances chimiques

Actinium NIK1K0956U
Chelating Agents 0
Radiopharmaceuticals 0
Actinium-225 0
Ligands 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5741

Subventions

Organisme : U.S. Department of Energy (DOE)
ID : DE-AC02-05CH11231

Informations de copyright

© 2024. The Author(s).

Références

Kim, Y.-S. & Brechbiel, M. W. An overview of targeted alpha therapy. Tumor Biol. 33, 573–590 (2012).
doi: 10.1007/s13277-011-0286-y
Sgouros, G., Bodei, L., McDevitt, M. R. & Nedrow, J. R. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat. Rev. Drug Discov. 19, 589–608 (2020).
pubmed: 32728208 pmcid: 7390460 doi: 10.1038/s41573-020-0073-9
Kramer-Marek, G. & Capala, J. The role of nuclear medicine in modern therapy of cancer. Tumor Biol. 33, 629–640 (2012).
doi: 10.1007/s13277-012-0373-8
Poty, S., Francesconi, L. C., McDevitt, M. R., Morris, M. J. & Lewis, J. S. [Formula: see text]-Emitters for radiotherapy: from basic radiochemistry to clinical studies—part 1. J. Nucl. Med. 59, 878–884 (2018).
pubmed: 29545378 pmcid: 6004557 doi: 10.2967/jnumed.116.186338
Geerlings, M. W., Kaspersen, F. M., Apostolidis, C. & van der Hout, R. The feasibility of
pubmed: 8429990 doi: 10.1097/00006231-199302000-00009
McDevitt, M. R. et al. Tumor therapy with targeted atomic nanogenerators. Science 294, 1537–1540 (2001).
pubmed: 11711678 doi: 10.1126/science.1064126
Morgan, K. A., Rudd, S. E., Noor, A. & Donnelly, P. S. Theranostic nuclear medicine with gallium-68, lutetium-177, copper-64/67, actinium-225, and lead-212/203 radionuclides. Chem. Rev. 123, 12004–12035 (2023).
pubmed: 37796539 doi: 10.1021/acs.chemrev.3c00456
Morgenstern, A., Apostolidis, C. & Bruchertseifer, F. Supply and clinical application of actinium-225 and bismuth-213. Sem. Nucl. Med. 50, 119–123 (2020).
doi: 10.1053/j.semnuclmed.2020.02.003
Kratochwil, C. et al.
pubmed: 27390158 doi: 10.2967/jnumed.116.178673
Boll, R. A., Malkemus, D. & Mirzadeh, S. Production of actinium-225 for alpha particle mediated radioimmunotherapy. Appl Radiat. Isot. 62, 667–679 (2005).
pubmed: 15763472 doi: 10.1016/j.apradiso.2004.12.003
Bruchertseifer, F., Kellerbauer, A., Malmbeck, R. & Morgenstern, A. Targeted alpha therapy with bismuth-213 and actinium-225: Meeting future demand. J. Label. Comp. Radiopharm. 62, 794–802 (2019).
doi: 10.1002/jlcr.3792
Thiele, N. A. & Wilson, J. J. Actinium-225 for targeted α therapy: coordination chemistry and current chelation approaches. Cancer Biother Radiopharm. 33, 336–348 (2018).
pubmed: 29889562 pmcid: 6207149
Jonathan, S., Ken, H. & Lisa, B. The future of targeted [Formula: see text]-therapy is bright, but rigorous studies are necessary to advance the field. J. Nucl. Med. 64, 219–220 (2023).
doi: 10.2967/jnumed.122.264805
Kirby, H. W. & Morss, L. R. “Actinium” in The Chemistry of the Actinide and Transactinide Elements (eds Morss L. R., Edelstein N. M. & Fuger J.) 18–51 (Springer, 2006).
Thiele, N. A. et al. An eighteen-membered macrocyclic ligand for actinium-225 targeted alpha therapy. Angew. Chem. Int. Ed. 56, 14712–14717 (2017).
doi: 10.1002/anie.201709532
Morgenstern, A. et al. Computer-assisted design of macrocyclic chelators for actinium-225 radiotherapeutics. Inorg. Chem. 60, 623–632 (2021).
pubmed: 33213142 doi: 10.1021/acs.inorgchem.0c02432
Yang, H. et al. Harnessing [Formula: see text]-emitting radionuclides for therapy: radiolabeling method review. J. Nucl. Med. 63, 5–13 (2022).
pubmed: 34503958 pmcid: 8717181 doi: 10.2967/jnumed.121.262687
Carbo-Bague, I. et al. Comparative study of a decadentate acyclic chelate, HOPO-O
pubmed: 36608341 doi: 10.1021/acs.inorgchem.2c03671
Matazova, E. V. et al. Insights into actinium complexes with tetraacetates─AcBATA versus AcDOTA: thermodynamic, structural, and labeling properties. Inorg. Chem. 62, 12223–12236 (2023).
pubmed: 37503892 doi: 10.1021/acs.inorgchem.3c00314
Aldrich, K. E. et al. Preparation of an actinium-228 generator. Inorg. Chem. 59, 3200–3206 (2020).
pubmed: 32062965 doi: 10.1021/acs.inorgchem.9b03563
Gao, Y., Grover, P. & Schreckenbach, G. Stabilization of hydrated Ac
pubmed: 34164034 pmcid: 8179294 doi: 10.1039/D0SC02342F
Deblonde, G. J.-P. et al. Capturing an elusive but critical element: natural protein enables actinium chemistry. Sci. Adv. 7, eabk0273 (2021).
pubmed: 34669462 pmcid: 8528432 doi: 10.1126/sciadv.abk0273
Ferrier, M. G. et al. Spectroscopic and computational investigation of actinium coordination chemistry. Nat. Commun. 7, 12312 (2016).
pubmed: 27531582 pmcid: 4992055 doi: 10.1038/ncomms12312
Ferrier, M. G. et al. Synthesis and characterization of the actinium aquo ion. ACS Cent. Sci. 3, 176–185 (2017).
pubmed: 28386595 pmcid: 5364452 doi: 10.1021/acscentsci.6b00356
Stein, B. W. et al. Advancing chelation chemistry for actinium and other +3 f-elements, Am, Cm, and La. J. Am. Chem. Soc. 141, 19404–19414 (2019).
pubmed: 31794205 doi: 10.1021/jacs.9b10354
Jones, Z. R. et al. Advancing understanding of actinide(III) (Ac, Am, Cm) aqueous complexation chemistry. Chem. Sci. 12, 5638–5654 (2021).
pubmed: 34168798 pmcid: 8179631 doi: 10.1039/D1SC00233C
Fried, S., Hagemann, F. & Zachariasen, W. H. The preparation and identification of some pure actinium compounds. J. Am. Chem. Soc. 72, 771–775 (1950).
doi: 10.1021/ja01158a034
Deblonde, G. J. P., Zavarin, M. & Kersting, A. B. The coordination properties and ionic radius of actinium: A 120-year-old enigma. Coord. Chem. Rev. 446, 214130 (2021).
doi: 10.1016/j.ccr.2021.214130
Abergel, R. J. et al. Biomimetic actinide chelators: an update on the preclinical development of the orally active hydroxypyridonate decorporation agents 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO). Health Phys. 99, 401–407 (2010).
pubmed: 20699704 pmcid: 2921233 doi: 10.1097/HP.0b013e3181c21273
Carter, K. P. et al. Developing scandium and yttrium coordination chemistry to advance theranostic radiopharmaceuticals. Commun. Chem. 3, 61 (2020).
pubmed: 36703424 pmcid: 9814396 doi: 10.1038/s42004-020-0307-0
Sturzbecher-Hoehne, M. et al. 3,4,3-LI(1,2-HOPO): In vitro formation of highly stable lanthanide complexes translates into efficacious in vivo europium decorporation. Dalton Trans. 40, 8340–8346 (2011).
pubmed: 21766096 doi: 10.1039/c1dt10840a
Sturzbecher-Hoehne, M., Yang, P., D’Aléo, A. & Abergel, R. J. Intramolecular sensitization of americium luminescence in solution: shining light on short-lived forbidden 5f transitions. Dalton Trans. 45, 9912–9919 (2016).
pubmed: 26961598 doi: 10.1039/C6DT00328A
Sturzbecher-Hoehne, M., Kullgren, B., Jarvis, E. E., An, D. D. & Abergel, R. J. Highly luminescent and stable hydroxypyridinonate complexes: a step towards new curium decontamination strategies. Chem. Eur. J. 20, 9962–9968 (2014).
pubmed: 25043376 doi: 10.1002/chem.201402103
Deblonde, G. J. P. et al. Chelation and stabilization of berkelium in oxidation state +IV. Nat. Chem. 9, 843–849 (2017).
pubmed: 28837177 doi: 10.1038/nchem.2759
Carter, K. P. et al. Structural and spectroscopic characterization of an einsteinium complex. Nature 590, 85–88 (2021).
pubmed: 33536647 doi: 10.1038/s41586-020-03179-3
Pallares, R. M., Carter, K. P., Faulkner, D. & Abergel, R. J. “Macromolecular crystallography for f-element complex characterization”. In Methods in Enzymology: Rare-Earth Element Biochemistry, Characterization and Applications of Lanthanide-Binding Biomolecules (ed Cotruvo, J. A.) 139–155 (Academic Press, 2021).
Goetz, D. H. et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10, 1033–1043 (2002).
pubmed: 12453412 doi: 10.1016/S1097-2765(02)00708-6
Allred, B. E. et al. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides. Proc. Natl. Acad. Sci. USA 112, 10342–10347 (2015).
pubmed: 26240330 pmcid: 4547258 doi: 10.1073/pnas.1508902112
Zielinska, B., Apostolidis, C., Bruchertseifer, F. & Morgenstern, A. An improved method for the production of Ac‐225/Bi‐213 from Th‐229 for targeted alpha therapy. Solvent Extraction Ion. Exch. 25, 339–349 (2007).
doi: 10.1080/07366290701285108
Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).
doi: 10.1107/S0567739476001551
Hoette, T. M., Abergel, R. J., Xu, J., Strong, R. K. & Raymond, K. N. The role of electrostatics in siderophore recognition by the immunoprotein siderocalin. J. Am. Chem. Soc. 130, 17584–17592 (2008).
pubmed: 19053425 pmcid: 2778733 doi: 10.1021/ja8074665
Kuzmič, P. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal. Biochem. 237, 260–273 (1996).
pubmed: 8660575 doi: 10.1006/abio.1996.0238
Cosby, A. G. et al. Siderocalin fusion proteins enable a new
pubmed: 37547455 pmcid: 10398355 doi: 10.1039/D3CB00050H
Clifton, M. C. et al. Parsing the functional specificity of siderocalin/lipocalin 2/NGAL for siderophores and related small-molecule ligands. J. Struct. Biol. X 2, 100008 (2019).
pubmed: 32647813 pmcid: 7337064
Makarova, T., Sinitsyna, G., Stepanov, A., Shestakova, I. & Shestakov, B. Complex formation of actinium. I. Determination of the stability constants of ethylenediaminetetraacetate complexes of actinium and its separation from lanthanum in solutions of EDTA by the method of electromigration. Sov. Radiochem. 14, 555–557 (1972).
Chatterjee, A., Maslen, E. & Watson, K. The effect of the lanthanoid contraction on the nonaaqualanthanoid(III) tris(trifluoromethanesulfonates). Acta Crystallogr. B 44, 381–386 (1988).
doi: 10.1107/S0108768188001764
Kelley, M. P. et al. Bond covalency and oxidation state of actinide ions complexed with therapeutic chelating agent 3,4,3-LI(1,2-HOPO). Inorg. Chem. 57, 5352–5363 (2018).
pubmed: 29624372 doi: 10.1021/acs.inorgchem.8b00345
Nelson, A.-G. D. et al. Further examples of the failure of surrogates to properly model the structural and hydrothermal chemistry of transuranium elements: insights provided by uranium and neptunium diphosphonates. Inorg. Chem. 47, 4945–4951 (2008).
pubmed: 18452285 doi: 10.1021/ic800255h
Scerri, E. Which Elements Belong in Group 3 of the Periodic Table? Chem. Int. 38, 22–23 (2016).

Auteurs

Jennifer N Wacker (JN)

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

Joshua J Woods (JJ)

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

Peter B Rupert (PB)

Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.

Appie Peterson (A)

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

Marc Allaire (M)

Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

Wayne W Lukens (WW)

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

Alyssa N Gaiser (AN)

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI, 48824, USA.
Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA.

Stefan G Minasian (SG)

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

Roland K Strong (RK)

Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA. rstrong@fredhutch.org.

Rebecca J Abergel (RJ)

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. abergel@berkeley.edu.
Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA. abergel@berkeley.edu.
Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA. abergel@berkeley.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH