Actinium chelation and crystallization in a macromolecular scaffold.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
15 Jul 2024
15 Jul 2024
Historique:
received:
08
02
2024
accepted:
27
06
2024
medline:
16
7
2024
pubmed:
16
7
2024
entrez:
15
7
2024
Statut:
epublish
Résumé
Targeted alpha therapy (TAT) pairs the specificity of antigen targeting with the lethality of alpha particles to eradicate cancerous cells. Actinium-225 [
Identifiants
pubmed: 39009580
doi: 10.1038/s41467-024-50017-5
pii: 10.1038/s41467-024-50017-5
doi:
Substances chimiques
Actinium
NIK1K0956U
Chelating Agents
0
Radiopharmaceuticals
0
Actinium-225
0
Ligands
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5741Subventions
Organisme : U.S. Department of Energy (DOE)
ID : DE-AC02-05CH11231
Informations de copyright
© 2024. The Author(s).
Références
Kim, Y.-S. & Brechbiel, M. W. An overview of targeted alpha therapy. Tumor Biol. 33, 573–590 (2012).
doi: 10.1007/s13277-011-0286-y
Sgouros, G., Bodei, L., McDevitt, M. R. & Nedrow, J. R. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat. Rev. Drug Discov. 19, 589–608 (2020).
pubmed: 32728208
pmcid: 7390460
doi: 10.1038/s41573-020-0073-9
Kramer-Marek, G. & Capala, J. The role of nuclear medicine in modern therapy of cancer. Tumor Biol. 33, 629–640 (2012).
doi: 10.1007/s13277-012-0373-8
Poty, S., Francesconi, L. C., McDevitt, M. R., Morris, M. J. & Lewis, J. S. [Formula: see text]-Emitters for radiotherapy: from basic radiochemistry to clinical studies—part 1. J. Nucl. Med. 59, 878–884 (2018).
pubmed: 29545378
pmcid: 6004557
doi: 10.2967/jnumed.116.186338
Geerlings, M. W., Kaspersen, F. M., Apostolidis, C. & van der Hout, R. The feasibility of
pubmed: 8429990
doi: 10.1097/00006231-199302000-00009
McDevitt, M. R. et al. Tumor therapy with targeted atomic nanogenerators. Science 294, 1537–1540 (2001).
pubmed: 11711678
doi: 10.1126/science.1064126
Morgan, K. A., Rudd, S. E., Noor, A. & Donnelly, P. S. Theranostic nuclear medicine with gallium-68, lutetium-177, copper-64/67, actinium-225, and lead-212/203 radionuclides. Chem. Rev. 123, 12004–12035 (2023).
pubmed: 37796539
doi: 10.1021/acs.chemrev.3c00456
Morgenstern, A., Apostolidis, C. & Bruchertseifer, F. Supply and clinical application of actinium-225 and bismuth-213. Sem. Nucl. Med. 50, 119–123 (2020).
doi: 10.1053/j.semnuclmed.2020.02.003
Kratochwil, C. et al.
pubmed: 27390158
doi: 10.2967/jnumed.116.178673
Boll, R. A., Malkemus, D. & Mirzadeh, S. Production of actinium-225 for alpha particle mediated radioimmunotherapy. Appl Radiat. Isot. 62, 667–679 (2005).
pubmed: 15763472
doi: 10.1016/j.apradiso.2004.12.003
Bruchertseifer, F., Kellerbauer, A., Malmbeck, R. & Morgenstern, A. Targeted alpha therapy with bismuth-213 and actinium-225: Meeting future demand. J. Label. Comp. Radiopharm. 62, 794–802 (2019).
doi: 10.1002/jlcr.3792
Thiele, N. A. & Wilson, J. J. Actinium-225 for targeted α therapy: coordination chemistry and current chelation approaches. Cancer Biother Radiopharm. 33, 336–348 (2018).
pubmed: 29889562
pmcid: 6207149
Jonathan, S., Ken, H. & Lisa, B. The future of targeted [Formula: see text]-therapy is bright, but rigorous studies are necessary to advance the field. J. Nucl. Med. 64, 219–220 (2023).
doi: 10.2967/jnumed.122.264805
Kirby, H. W. & Morss, L. R. “Actinium” in The Chemistry of the Actinide and Transactinide Elements (eds Morss L. R., Edelstein N. M. & Fuger J.) 18–51 (Springer, 2006).
Thiele, N. A. et al. An eighteen-membered macrocyclic ligand for actinium-225 targeted alpha therapy. Angew. Chem. Int. Ed. 56, 14712–14717 (2017).
doi: 10.1002/anie.201709532
Morgenstern, A. et al. Computer-assisted design of macrocyclic chelators for actinium-225 radiotherapeutics. Inorg. Chem. 60, 623–632 (2021).
pubmed: 33213142
doi: 10.1021/acs.inorgchem.0c02432
Yang, H. et al. Harnessing [Formula: see text]-emitting radionuclides for therapy: radiolabeling method review. J. Nucl. Med. 63, 5–13 (2022).
pubmed: 34503958
pmcid: 8717181
doi: 10.2967/jnumed.121.262687
Carbo-Bague, I. et al. Comparative study of a decadentate acyclic chelate, HOPO-O
pubmed: 36608341
doi: 10.1021/acs.inorgchem.2c03671
Matazova, E. V. et al. Insights into actinium complexes with tetraacetates─AcBATA versus AcDOTA: thermodynamic, structural, and labeling properties. Inorg. Chem. 62, 12223–12236 (2023).
pubmed: 37503892
doi: 10.1021/acs.inorgchem.3c00314
Aldrich, K. E. et al. Preparation of an actinium-228 generator. Inorg. Chem. 59, 3200–3206 (2020).
pubmed: 32062965
doi: 10.1021/acs.inorgchem.9b03563
Gao, Y., Grover, P. & Schreckenbach, G. Stabilization of hydrated Ac
pubmed: 34164034
pmcid: 8179294
doi: 10.1039/D0SC02342F
Deblonde, G. J.-P. et al. Capturing an elusive but critical element: natural protein enables actinium chemistry. Sci. Adv. 7, eabk0273 (2021).
pubmed: 34669462
pmcid: 8528432
doi: 10.1126/sciadv.abk0273
Ferrier, M. G. et al. Spectroscopic and computational investigation of actinium coordination chemistry. Nat. Commun. 7, 12312 (2016).
pubmed: 27531582
pmcid: 4992055
doi: 10.1038/ncomms12312
Ferrier, M. G. et al. Synthesis and characterization of the actinium aquo ion. ACS Cent. Sci. 3, 176–185 (2017).
pubmed: 28386595
pmcid: 5364452
doi: 10.1021/acscentsci.6b00356
Stein, B. W. et al. Advancing chelation chemistry for actinium and other +3 f-elements, Am, Cm, and La. J. Am. Chem. Soc. 141, 19404–19414 (2019).
pubmed: 31794205
doi: 10.1021/jacs.9b10354
Jones, Z. R. et al. Advancing understanding of actinide(III) (Ac, Am, Cm) aqueous complexation chemistry. Chem. Sci. 12, 5638–5654 (2021).
pubmed: 34168798
pmcid: 8179631
doi: 10.1039/D1SC00233C
Fried, S., Hagemann, F. & Zachariasen, W. H. The preparation and identification of some pure actinium compounds. J. Am. Chem. Soc. 72, 771–775 (1950).
doi: 10.1021/ja01158a034
Deblonde, G. J. P., Zavarin, M. & Kersting, A. B. The coordination properties and ionic radius of actinium: A 120-year-old enigma. Coord. Chem. Rev. 446, 214130 (2021).
doi: 10.1016/j.ccr.2021.214130
Abergel, R. J. et al. Biomimetic actinide chelators: an update on the preclinical development of the orally active hydroxypyridonate decorporation agents 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO). Health Phys. 99, 401–407 (2010).
pubmed: 20699704
pmcid: 2921233
doi: 10.1097/HP.0b013e3181c21273
Carter, K. P. et al. Developing scandium and yttrium coordination chemistry to advance theranostic radiopharmaceuticals. Commun. Chem. 3, 61 (2020).
pubmed: 36703424
pmcid: 9814396
doi: 10.1038/s42004-020-0307-0
Sturzbecher-Hoehne, M. et al. 3,4,3-LI(1,2-HOPO): In vitro formation of highly stable lanthanide complexes translates into efficacious in vivo europium decorporation. Dalton Trans. 40, 8340–8346 (2011).
pubmed: 21766096
doi: 10.1039/c1dt10840a
Sturzbecher-Hoehne, M., Yang, P., D’Aléo, A. & Abergel, R. J. Intramolecular sensitization of americium luminescence in solution: shining light on short-lived forbidden 5f transitions. Dalton Trans. 45, 9912–9919 (2016).
pubmed: 26961598
doi: 10.1039/C6DT00328A
Sturzbecher-Hoehne, M., Kullgren, B., Jarvis, E. E., An, D. D. & Abergel, R. J. Highly luminescent and stable hydroxypyridinonate complexes: a step towards new curium decontamination strategies. Chem. Eur. J. 20, 9962–9968 (2014).
pubmed: 25043376
doi: 10.1002/chem.201402103
Deblonde, G. J. P. et al. Chelation and stabilization of berkelium in oxidation state +IV. Nat. Chem. 9, 843–849 (2017).
pubmed: 28837177
doi: 10.1038/nchem.2759
Carter, K. P. et al. Structural and spectroscopic characterization of an einsteinium complex. Nature 590, 85–88 (2021).
pubmed: 33536647
doi: 10.1038/s41586-020-03179-3
Pallares, R. M., Carter, K. P., Faulkner, D. & Abergel, R. J. “Macromolecular crystallography for f-element complex characterization”. In Methods in Enzymology: Rare-Earth Element Biochemistry, Characterization and Applications of Lanthanide-Binding Biomolecules (ed Cotruvo, J. A.) 139–155 (Academic Press, 2021).
Goetz, D. H. et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10, 1033–1043 (2002).
pubmed: 12453412
doi: 10.1016/S1097-2765(02)00708-6
Allred, B. E. et al. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides. Proc. Natl. Acad. Sci. USA 112, 10342–10347 (2015).
pubmed: 26240330
pmcid: 4547258
doi: 10.1073/pnas.1508902112
Zielinska, B., Apostolidis, C., Bruchertseifer, F. & Morgenstern, A. An improved method for the production of Ac‐225/Bi‐213 from Th‐229 for targeted alpha therapy. Solvent Extraction Ion. Exch. 25, 339–349 (2007).
doi: 10.1080/07366290701285108
Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).
doi: 10.1107/S0567739476001551
Hoette, T. M., Abergel, R. J., Xu, J., Strong, R. K. & Raymond, K. N. The role of electrostatics in siderophore recognition by the immunoprotein siderocalin. J. Am. Chem. Soc. 130, 17584–17592 (2008).
pubmed: 19053425
pmcid: 2778733
doi: 10.1021/ja8074665
Kuzmič, P. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal. Biochem. 237, 260–273 (1996).
pubmed: 8660575
doi: 10.1006/abio.1996.0238
Cosby, A. G. et al. Siderocalin fusion proteins enable a new
pubmed: 37547455
pmcid: 10398355
doi: 10.1039/D3CB00050H
Clifton, M. C. et al. Parsing the functional specificity of siderocalin/lipocalin 2/NGAL for siderophores and related small-molecule ligands. J. Struct. Biol. X 2, 100008 (2019).
pubmed: 32647813
pmcid: 7337064
Makarova, T., Sinitsyna, G., Stepanov, A., Shestakova, I. & Shestakov, B. Complex formation of actinium. I. Determination of the stability constants of ethylenediaminetetraacetate complexes of actinium and its separation from lanthanum in solutions of EDTA by the method of electromigration. Sov. Radiochem. 14, 555–557 (1972).
Chatterjee, A., Maslen, E. & Watson, K. The effect of the lanthanoid contraction on the nonaaqualanthanoid(III) tris(trifluoromethanesulfonates). Acta Crystallogr. B 44, 381–386 (1988).
doi: 10.1107/S0108768188001764
Kelley, M. P. et al. Bond covalency and oxidation state of actinide ions complexed with therapeutic chelating agent 3,4,3-LI(1,2-HOPO). Inorg. Chem. 57, 5352–5363 (2018).
pubmed: 29624372
doi: 10.1021/acs.inorgchem.8b00345
Nelson, A.-G. D. et al. Further examples of the failure of surrogates to properly model the structural and hydrothermal chemistry of transuranium elements: insights provided by uranium and neptunium diphosphonates. Inorg. Chem. 47, 4945–4951 (2008).
pubmed: 18452285
doi: 10.1021/ic800255h
Scerri, E. Which Elements Belong in Group 3 of the Periodic Table? Chem. Int. 38, 22–23 (2016).