The potential application of Czenspinskia transversostriata in biological control.
Amblyseius swirskii
Astigmatid mites
Fungal control
Mass-rearing
Powdery mildew
Supplemental food
Journal
Experimental & applied acarology
ISSN: 1572-9702
Titre abrégé: Exp Appl Acarol
Pays: Netherlands
ID NLM: 8507436
Informations de publication
Date de publication:
12 Jul 2024
12 Jul 2024
Historique:
received:
11
03
2024
accepted:
26
06
2024
medline:
12
7
2024
pubmed:
12
7
2024
entrez:
12
7
2024
Statut:
aheadofprint
Résumé
Phytoseiid predatory mites are one of the most important groups of biocontrol agents, commonly used in biological control. The ability to produce these predatory mites economically, at high density on cheap factitious food sources, is a major contributor to their success. Astigmatid mites are the most widely used factitious food for this purpose. In this study, we investigated the potential application of the leaf-dwelling astigmatid mite Czenspinskia transversostriata (Oudemans) (Acari: Winterschmidtiidae) as a prey mite in biological control. We tested whether C. transversostriata is a suitable food source for the predatory mite Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae), both in the laboratory and on cucumber plants. Based on a reproduction trial, C. transversostriata proved to be an equally good food source compared to both pollen of Typha angustifolia L. (Poales: Typhaceae) and a frequently used prey mite Carpoglyphus lactis L. (Acari: Carpoglyphidae). In a pre-establishment trial on cucumber plants, populations of A. swirskii reached equally high densities when supplemented with C. transversostriata, compared to C. lactis. Lastly, we show that C. transversostriata is capable of feeding and reproducing on powdery mildew growing on cucumber plants, thereby slowing down the development of the pathogenic fungus. Results derived from this study show that C. transversostriata may have multiple potential applications in biological control programs.
Identifiants
pubmed: 38995470
doi: 10.1007/s10493-024-00945-0
pii: 10.1007/s10493-024-00945-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Atcheson WC (1953) An ecological study of three species of mites on American Linden. J Econ Entomol 46:705–705. https://doi.org/10.1093/jee/46.4.705
doi: 10.1093/jee/46.4.705
Barbosa MFC, de Moraes GJ (2015) Evaluation of astigmatid mites as factitious food for rearing four predaceous phytoseiid mites (Acari: Astigmatina; Phytoseiidae). Biol Control 91:22–26. https://doi.org/10.1016/j.biocontrol.2015.06.010
doi: 10.1016/j.biocontrol.2015.06.010
Barbosa MFC, de Moraes GJ (2016) Potential of astigmatid mites (Acari: Astigmatina) as prey for rearing edaphic predatory mites of the families Laelapidae and Rhodacaridae (Acari: Mesostigmata). Exp Appl Acarol 69:289–296. https://doi.org/10.1007/s10493-016-0043-4
doi: 10.1007/s10493-016-0043-4
pubmed: 27115501
Barbosa MFC, de Moraes GJ (2021) Mites of the family Winterschmidtiidae (Acari: Sarcoptiformes: Astigmatina) from agricultural habitats in Brazil, with description of a new species and a key to species reported. Syst Appl Acarol 26:1040–1054. https://doi.org/10.11158/saa.26.6.3
doi: 10.11158/saa.26.6.3
Benson CM, Labbe RM (2021) Exploring the role of Supplemental Foods for Improved Greenhouse Biological Control. Ann Entomol Soc Am 114:302–321. https://doi.org/10.1093/aesa/saab005
doi: 10.1093/aesa/saab005
Berkett LP, Forsythe HY (1980) Predaceous mites (Acari) associated with apple foliage in Maine. Can Entomol 112:497–502. https://doi.org/10.4039/Ent112497-5
doi: 10.4039/Ent112497-5
Blackwood JS, Luh H-K, Croft BA (2004) Evaluation of Prey-Stage Preference as an Indicator of Life-Style type in Phytoseiid Mites. Exp Appl Acarol 33:261–280. https://doi.org/10.1023/B:APPA.0000038623.75416.e3
doi: 10.1023/B:APPA.0000038623.75416.e3
pubmed: 15560524
Bolckmans K, van Houten Y (2006) Mite composition, use thereof, method for rearing the phytoseiid predatory mite Amblyseius Swirskii, rearing system for rearing said phytoseiid mite and methods for biological pest control on a crop. World Intellectual Property Organisation. WO 2006/057552
Calvo FJ, Knapp M, van Houten YM, Hoogerbrugge H, Belda JE (2015) Amblyseius Swirskii: what made this predatory mite such a successful biocontrol agent? Exp Appl Acarol 65:419–433. https://doi.org/10.1007/s10493-014-9873-0
doi: 10.1007/s10493-014-9873-0
pubmed: 25524511
Castañé C, Alomar O, Rocha A, Vila E, Riudavets J (2022) Control of Aculops lycopersici with the Predatory Mite Transeius montdorensis. Insects 13:1116. https://doi.org/10.3390/insects13121116
doi: 10.3390/insects13121116
pubmed: 36555026
pmcid: 9782060
Crawley MJ (2007) The R book. Wiley, Chichester, UK
Czaikowska N, van de Vrie M, Kropczynska D (1988) Mites of the genus Tyrophagus as pests of ornamentals in greenhouses. Meded Van Fac Landbouw Rijksuniv Gent 53:799–809
Delisle JF, Brodeur J, Shipp L (2015) Evaluation of various types of supplemental food for two species of predatory mites, Amblyseius swirskii and Neoseiulus cucumeris (Acari: Phytoseiidae). Exp Appl Acarol 65: 483–494. https://doi.org/10.1007/s10493-014-9862-3
Dosse G, Schneider I (1957) Biologie Und Lebensweise Von Czenspinskia Lordi Nesbitt (Acar., Sarcoptiformes). Z Für Angew Entomol 44:403–418
Fidgett MJ, Stinson CSA (2008) Method for rearing predatory mites. WO 2008015393A1
Garman P (1948) Mites species from apple trees in Connecticut. Conn Agric Exp Stn Bull N Hav USA 520:1–27
Glen DM (1977) Predation of Codling Moth Eggs, Cydia Pomonella, the predators responsible and their alternative prey. J Appl Ecol 14:445–456. https://doi.org/10.2307/2402557
doi: 10.2307/2402557
Hiroshi N (1991) Studies on acarid mites (Acari, Astigmata) damaging vegetable plants. II: damage to vegetable seedlings. Jpn J Appl Entomol 35:303–309
doi: 10.1303/jjaez.35.303
Hoogerbrugge H, van Houten YM, van Baal E, Bolckmans K (2008) Alternative food sources to enable establishment of Amblyseius Swirskii (Athias-Henriot) on chrysanthemum without pest presence. IOBC/wprs Bull 32:79–82
Hoy MA (2011) Agricultural acarology: introduction to integrated mite management. CRC, Boca Raton
Huang H, Xu X, Lv J, Li G, Wang E, Gao Y (2013) Impact of proteins and saccharides on mass production of Tyrophagus putrescentiae (Acari: Acaridae) and its predator Neoseiulus Barkeri (Acari: Phytoseiidae). Biocontrol Sci Technol 23:1231–1244. https://doi.org/10.1080/09583157.2013.822849
doi: 10.1080/09583157.2013.822849
Hughes AM (1962) The genus Calvolia Oudemans, 1911 (Acari: Sarcoptiformes). Acarologia 4:48–63
Knapp M, van Houten Y, van Baal E, Groot T (2018) Use of predatory mites in commercial biocontrol: current status and future prospects. Acarologia 58:7282. https://doi.org/10.24349/ACAROLOGIA/20184275
doi: 10.24349/ACAROLOGIA/20184275
Knisley BC, Swift FC (1972) Qualitative Study of Mite Fauna Associated with Apple Foliage in New Jersey 1. J Econ Entomol 65:445–448. https://doi.org/10.1093/jee/65.2.445
doi: 10.1093/jee/65.2.445
Krantz GW, Lindquist EE (1979) Evolution of Phytophagous mites (ACARI). Annu Rev Entomol 24:121–158. https://doi.org/10.1146/annurev.en.24.010179.001005
doi: 10.1146/annurev.en.24.010179.001005
Lebeda A, Sedláková B (2010) Screening for resistance to cucurbit powdery mildews (Golovinomyces Cichoracearum, Podosphaera Xanthii). Mass Screening techniques for selecting crops resistant to Disease. International Atomic Energy Agency (IAEA), Vienna, Austria, pp 295–307. Spencer MM, Lebeda A
Leman A, Messelink GJ (2015) Supplemental food that supports both predator and pest: a risk for biological control? Exp Appl Acarol 65:511–524. https://doi.org/10.1007/s10493-014-9859-y
doi: 10.1007/s10493-014-9859-y
pubmed: 25349063
Lenth RV (2016) Least-squared means: the R package lsmeans. J Stat Softw 69:1–33. https://doi.org/10.18637/jss.v069.i01
Leppla NC, Morales-Ramos JA, Shapiro-Ilan DI, Rojas MG (2023) Introduction. Mass Production of Beneficial organisms. Elsevier, pp 3–12. https://doi.org/10.1016/B978-0-12-822106-8.00007-5
Liu J, Zhang Z-Q (2016) Effects of short-term exposure to low temperature on survival, development and reproduction of banana-associated Oulenziella bakeri (Acari: Winterschmidtiidae). Syst Appl Acarol 21:1078–1086. https://doi.org/10.11158/saa.21.8.8
doi: 10.11158/saa.21.8.8
Lopez L (2023) Meet Amblyseius Swirskii (Acari: Phytoseiidae): a commonly used predatory mite in vegetable crops. J Integr Pest Manag 14:20. https://doi.org/10.1093/jipm/pmad018
doi: 10.1093/jipm/pmad018
Massaro M, Martin JPI, de Moraes GJ (2016) Factitious food for mass production of predaceous phytoseiid mites (Acari: Phytoseiidae) commonly found in Brazil. Exp Appl Acarol 70:411–420. https://doi.org/10.1007/s10493-016-0087-5
doi: 10.1007/s10493-016-0087-5
pubmed: 27631763
Messelink GJ, Ramakers PMJ, Cortez JA, Janssen A (2009) How to enhance pest control by generalist predatory mites in greenhouse crops. Proc Third Int Symp Biol Control Arthropods. pp 309–318
Messelink GJ, Bennison J, Alomar O, Ingegno BL, Tavella L, Shipp L, Palevsky E, Wäckers FL (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. Biocontrol 59:377–393. https://doi.org/10.1007/s10526-014-9579-6
doi: 10.1007/s10526-014-9579-6
Midthassel A, Leather SR, Baxter IH (2013) Life table parameters and capture success ratio studies of Typhlodromips Swirskii (Acari: Phytoseiidae) to the factitious prey suidasia medanensis (Acari: Suidasidae). Exp Appl Acarol 61:69–78. https://doi.org/10.1007/s10493-013-9682-x
doi: 10.1007/s10493-013-9682-x
pubmed: 23474738
Nesbitt HHJ (1946) Three new mites from Nova Scotian apple trees. Can Entomol 78:15–22. https://doi.org/10.4039/Ent7815-1
doi: 10.4039/Ent7815-1
Nguyen DT, Vangansbeke D, Lü X, De Clercq P (2013) Development and reproduction of the predatory mite Amblyseius swirskii on artificial diets. Biocontrol 58:369–377. https://doi.org/10.1007/s10526-012-9502-y
doi: 10.1007/s10526-012-9502-y
Oliveira CM, de Návia D, Frizzas MR (2007) First record of Tyrophagus putrescentiae (Schrank) (Acari: Acaridae) in soybean plants under no tillage in Minas Gerais. Brazil Ciênc Rural 37:876–877. https://doi.org/10.1590/S0103-84782007000300043
doi: 10.1590/S0103-84782007000300043
Pascua MS, Rocca M, Greco N, De Clercq P (2020) Typha angustifolia L. pollen as an alternative food for the predatory mite neoseiulus californicus (McGregor) (Acari: Phytoseiidae). Syst Appl Acarol 25:51–62. https://doi.org/10.11158/saa.25.1.4
doi: 10.11158/saa.25.1.4
Pijnakker J, Vangansbeke D, Duarte M, Moerkens R, Wäckers FL (2020) Predators and parasitoids-in-First: from inundative releases to preventative Biological Control in Greenhouse crops. Front Sustain Food Syst 4:595630. https://doi.org/10.3389/fsufs.2020.595630
doi: 10.3389/fsufs.2020.595630
Pirayeshfar F, Safavi SA, Sarraf Moayeri HR, Messelink GJ (2020) The potential of highly nutritious frozen stages of Tyrophagus putrescentiae as a supplemental food source for the predatory mite Amblyseius Swirskii. Biocontrol Sci Technol 30:403–417. https://doi.org/10.1080/09583157.2020.1722798
doi: 10.1080/09583157.2020.1722798
Ramakers PMJ, Van Lieburg MJ (1982) Start of commercial production and introduction of Amblyseius Mckenziei Sch. & pr. (Acarina: Phytoseiidae) for the control of Thrips tabaci Lind. (Thysanoptera: Thripidae) in glasshouses. Meded Van Fac Landbouw Rijksuniv Gent 47:541–545
van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. Biocontrol 57:1–20. https://doi.org/10.1007/s10526-011-9395-1
doi: 10.1007/s10526-011-9395-1
van Rijn PC, Tanigoshi LK (1999) The contribution of Extrafloral Nectar to Survival and Reproduction of the Predatory Mite Iphiseius degenerans on Ricinus communis. Exp Appl Acarol 23:281–296. https://doi.org/10.1023/A:1006240126971
doi: 10.1023/A:1006240126971
Vangansbeke D, Nguyen DT, Audenaert J, Verhoeven R, Gobin B, Tirry L, De Clercq P (2016) Supplemental food for Amblyseius Swirskii in the control of thrips: feeding friend or foe? Do food supplements enhance predator or prey populations? Pest Manag Sci 72:466–473. https://doi.org/10.1002/ps.4000
doi: 10.1002/ps.4000
pubmed: 25755020
Vangansbeke D, Duarte MVA, Pekas A, Wäckers F, Bolckmans K (2023) Mass production of predatory mites: state of the art and future challenges. Mass Production of Beneficial organisms. Elsevier, pp 195–232. https://doi.org/10.1016/B978-0-12-822106-8.00006-3
Walter DE, Denmark HA (1991) Use of Leaf Domatia on wild grape (Vitis munsoniana) by arthropods in Central Florida. Fla Entomol 74:440–446. https://doi.org/10.2307/3494838
doi: 10.2307/3494838
Walter DE, O’Dowd DJ (1992) Leaves with Domatia have more mites. Ecology 73:1514–1518. https://doi.org/10.2307/1940694
doi: 10.2307/1940694
Zhu R, Guo J-J, Yi T-c, Hou F, Jin D-C (2023) Potential of a winterschmidtiid prey mite for the production of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae). Exp Appl Acarol 91:571–584 https://doi.org/10.1007/s10493-023-00860-w