Patritumab deruxtecan in HER2-negative breast cancer: part B results of the window-of-opportunity SOLTI-1805 TOT-HER3 trial and biological determinants of early response.
Humans
Female
Breast Neoplasms
/ drug therapy
Receptor, ErbB-3
/ metabolism
Receptor, ErbB-2
/ metabolism
Antibodies, Monoclonal, Humanized
/ therapeutic use
Broadly Neutralizing Antibodies
/ therapeutic use
Middle Aged
Antibodies, Monoclonal
/ therapeutic use
Adult
Aged
Animals
Tumor Suppressor Protein p53
/ genetics
Mutation
Mice
Antineoplastic Agents
/ therapeutic use
Treatment Outcome
Trastuzumab
Camptothecin
/ analogs & derivatives
Immunoconjugates
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
11 Jul 2024
11 Jul 2024
Historique:
received:
18
09
2023
accepted:
26
06
2024
medline:
12
7
2024
pubmed:
12
7
2024
entrez:
11
7
2024
Statut:
epublish
Résumé
Patritumab deruxtecan (HER3-DXd) exhibits promising efficacy in breast cancer, with its activity not directly correlated to baseline ERBB3/HER3 levels. This research investigates the genetic factors affecting HER3-DXd's response in women with early-stage hormone receptor-positive and HER2-negative (HR+/HER2-) breast cancer. In the SOLTI-1805 TOT-HER3 trial, a single HER3-DXd dose was administered to 98 patients across two parts: 78 patients received 6.4 mg/kg (Part A), and 44 received a lower 5.6 mg/kg dose (Part B). The CelTIL score, measuring tumor cellularity and infiltrating lymphocytes from baseline to day 21, was used to assess drug activity. Part A demonstrated increased CelTIL score after one dose of HER3-DXd. Here we report CelTIL score and safety for Part B. In addition, the exploratory analyses of part A involve a comprehensive study of gene expression, somatic mutations, copy-number segments, and DNA-based subtypes, while Part B focuses on validating gene expression. RNA analyses show significant correlations between CelTIL responses, high proliferation genes (e.g., CCNE1, MKI67), and low expression of luminal genes (e.g., NAT1, SLC39A6). DNA findings indicate that CelTIL response is significantly associated with TP53 mutations, proliferation, non-luminal signatures, and a distinct DNA-based subtype (DNADX cluster-3). Critically, low HER2DX ERBB2 mRNA, correlates with increased HER3-DXd activity, which is validated through in vivo patient-derived xenograft models. This study proposes chemosensitivity determinants, DNA-based subtype classification, and low ERBB2 expression as potential markers for HER3-DXd activity in HER2-negative breast cancer.
Identifiants
pubmed: 38992028
doi: 10.1038/s41467-024-50056-y
pii: 10.1038/s41467-024-50056-y
doi:
Substances chimiques
Receptor, ErbB-3
EC 2.7.10.1
Receptor, ErbB-2
EC 2.7.10.1
ERBB3 protein, human
EC 2.7.10.1
Antibodies, Monoclonal, Humanized
0
ERBB2 protein, human
EC 2.7.10.1
patritumab
86780VJI1Q
Broadly Neutralizing Antibodies
0
Antibodies, Monoclonal
0
trastuzumab deruxtecan
5384HK7574
Tumor Suppressor Protein p53
0
Antineoplastic Agents
0
TP53 protein, human
0
Trastuzumab
P188ANX8CK
Camptothecin
XT3Z54Z28A
Immunoconjugates
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5826Subventions
Organisme : Breast Cancer Research Foundation (BCRF)
ID : BCRF-23-198
Informations de copyright
© 2024. The Author(s).
Références
Baselga, J. & Swain, S. M. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat. Rev. Cancer 9, 463–475 (2009).
pubmed: 19536107
doi: 10.1038/nrc2656
Liu, X. et al. Development of effective therapeutics targeting HER3 for cancer treatment. Biol. Proced. Online 21, 1–10 (2019).
doi: 10.1186/s12575-019-0093-1
Mota, J. M. et al. A comprehensive review of heregulins, HER3, and HER4 as potential therapeutic targets in cancer. Oncotarget 8, 89284–89306 (2017).
pubmed: 29179520
pmcid: 5687690
doi: 10.18632/oncotarget.18467
Hashimoto, Y. et al. A novel HER3-targeting antibody–drug conjugate, U3-1402, exhibits potent therapeutic efficacy through the delivery of cytotoxic payload by efficient internalization. Clin. Cancer Res. 25, 7151–7161 (2019).
pubmed: 31471314
doi: 10.1158/1078-0432.CCR-19-1745
Jänne, P. A. et al. Efficacy and safety of patritumab deruxtecan (HER3-DXd) in EGFR inhibitor-resistant, EGFR-mutated non–small cell lung cancer. Cancer Discov. 12, 74–89 (2022).
pubmed: 34548309
doi: 10.1158/2159-8290.CD-21-0715
Krop, I. E. et al. Patritumab deruxtecan (HER3-DXd), a human epidermal growth factor receptor 3-directed antibody-drug conjugate, in patients with previously treated human epidermal growth factor receptor 3-expressing metastatic breast cancer: a multicenter, phase I/II Trial. J. Clin. Oncol. 41, 5550–5560 (2023).
pubmed: 37801674
pmcid: 10730028
doi: 10.1200/JCO.23.00882
Oliveira, M. et al. Patritumab deruxtecan in untreated hormone receptor-positive/HER2-negative early breast cancer: final results from Part A of the window-of-opportunity SOLTI TOT-HER3 pre-operative study. Anna. Oncol. 0 (2023).
Oliveira, M. et al. 124O Patritumab deruxtecan (HER3-DXd) in hormonal receptor-positive/HER2-negative (HR+/HER2-) and triple-negative breast cancer (TNBC): results of part B of SOLTI TOT-HER3 window of opportunity trial. ESMO Open 8, 101463 (2023).
doi: 10.1016/j.esmoop.2023.101463
Modi, S. et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N. Engl. J. Med. NEJMoa1914510 https://doi.org/10.1056/NEJMoa1914510 (2019).
Williams, M., Spreafico, A., Vashisht, K. & Hinrichs, M. J. Patient selection strategies to maximize therapeutic index of antibody–drug conjugates: Prior approaches and future directions. Mol. Cancer Ther. 19, 1770–1783 (2020).
pubmed: 32546659
doi: 10.1158/1535-7163.MCT-19-0993
Nuciforo, P. et al. A predictive model of pathologic response based on tumor cellularity and tumor-infiltrating lymphocytes (CelTIL) in HER2-positive breast cancer treated with chemo-free dual HER2 blockade. Ann. Oncol. 29, 170–177 (2018).
pubmed: 29045543
doi: 10.1093/annonc/mdx647
Chic, N. et al. Tumor cellularity and infiltrating lymphocytes as a survival surrogate in HER2-positive breast cancer. J. Natl Cancer Inst. https://doi.org/10.1093/JNCI/DJAB057 (2021).
González-Farré, B. et al. 15P The CelTIL score as an early predictor of anti-tumour response following neoadjuvant therapy (NAT): a SOLTI biomarker analysis. Ann Oncol. 31, S22 (2020).
doi: 10.1016/j.annonc.2020.03.151
Pascual, T. et al. Neoadjuvant eribulin in HER2-negative early-stage breast cancer (SOLTI-1007-NeoEribulin): a multicenter, two-cohort, non-randomized phase II trial. npj Breast Cancer 7, 1–11 (2021).
pubmed: 33397968
pmcid: 7782714
doi: 10.1038/s41523-021-00351-4
Hatzis, C. et al. A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA 305, 1873–1881 (2011).
pubmed: 21558518
pmcid: 5638042
doi: 10.1001/jama.2011.593
Òdena, A. et al. Abstract P5-13-14: Antitumor activity of patritumab deruxtecan (HER3-DXd), a HER3-directed antibody drug conjugate (ADC) across a diverse panel of breast cancer (BC) patient-derived xenografts (PDXs). Cancer Res. 82, P5-13–14 (2022).
Xia, Y., Fan, C., Hoadley, K. A., Parker, J. S. & Perou, C. M. Genetic determinants of the molecular portraits of epithelial cancers. Nat. Commun. 10, 1–13 (2019).
doi: 10.1038/s41467-019-13588-2
Prat, A. et al. Circulating tumor DNA reveals complex biological features with clinical relevance in metastatic breast cancer. Nat. Commun. 14, 1–16 (2023).
doi: 10.1038/s41467-023-36801-9
Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).
pubmed: 22522925
pmcid: 3440846
doi: 10.1038/nature10983
Barroso-Sousa, R. & Tolaney, S. M. Clinical development of new antibody–drug conjugates in breast cancer: to infinity and beyond. BioDrugs 35, 159–174 (2021).
pubmed: 33666903
pmcid: 7933915
doi: 10.1007/s40259-021-00472-z
Criscitiello, C., Morganti, S. & Curigliano, G. Antibody–drug conjugates in solid tumors: a look into novel targets. J. Hematol. Oncol.14, 1–18 (2021).
doi: 10.1186/s13045-021-01035-z
Brasó-Maristany, F. et al. HER2DX ERBB2 mRNA expression in advanced HER2-positive breast cancer treated with T-DM1. J. Natl Cancer Inst. https://doi.org/10.1093/JNCI/DJAC227 (2022).
de Haas, S. L. et al. Tumor biomarkers and efficacy in patients treated with trastuzumab emtansine + pertuzumab versus standard of care in HER2-positive early breast cancer: an open-label, phase III study (KRISTINE). Breast Cancer Res. 25, 2 (2023).
pubmed: 36631725
pmcid: 9832665
doi: 10.1186/s13058-022-01587-z
Bardia, A. et al. Biomarker analyses in the phase III ASCENT study of sacituzumab govitecan versus chemotherapy in patients with metastatic triple-negative breast cancer. Ann. Oncol. 32, 1148–1156 (2021).
pubmed: 34116144
doi: 10.1016/j.annonc.2021.06.002
Koganemaru, S. et al. U3-1402, a novel HER3-targeting antibody–drug conjugate, for the treatment of colorectal cancer. Mol. Cancer Ther. 18, 2043–2050 (2019).
pubmed: 31395690
doi: 10.1158/1535-7163.MCT-19-0452
Haratani, K. et al. U3-1402 sensitizes HER3-expressing tumors to PD-1 blockade by immune activation. J. Clin. Invest. 130, 374–388 (2020).
pubmed: 31661465
doi: 10.1172/JCI126598
Pascual, T. et al. SOLTI-1805 TOT-HER3 study concept: a window-of-opportunity trial of patritumab deruxtecan, a HER3 directed antibody drug conjugate, in patients with early breast cancer. Front. Oncol. 11, 685 (2021).
doi: 10.3389/fonc.2021.638482
Prat, A. et al. Prediction of response to neoadjuvant chemotherapy using core needle biopsy samples with the Prosigna assay. Clin. Cancer Res. 22, 560–566 (2016).
pubmed: 26152740
doi: 10.1158/1078-0432.CCR-15-0630
Prat, A. et al. Predicting response and survival in chemotherapy-treated triple-negative breast cancer. Br. J. Cancer 111, 1532–1541 (2014).
pubmed: 25101563
pmcid: 4200088
doi: 10.1038/bjc.2014.444
Pascual, T. et al. Independent validation of the PAM50-based Chemo-Endocrine Score (CES) in hormone receptor-positive HER2-positive breast cancer treated with neoadjuvant anti-HER2-based therapy. Clin. Cancer Res. 27, 3116–3125 (2021).
pubmed: 33632929
pmcid: 8172481
doi: 10.1158/1078-0432.CCR-20-4102
Prat, A. et al. A PAM50-based chemoendocrine score for hormone receptor-positive breast cancer with an intermediate risk of relapse. Clin. Cancer Res. 23, 3035–3044 (2017).
pubmed: 27903675
doi: 10.1158/1078-0432.CCR-16-2092
Shahbandi, A., Nguyen, H. D. & Jackson, J. G. TP53 mutations and outcomes in breast cancer: reading beyond the headlines. Trends Cancer 6, 98 (2020).
pubmed: 32061310
pmcid: 7931175
doi: 10.1016/j.trecan.2020.01.007
Drago, J. Z., Ferraro, E., Abuhadra, N. & Modi, S. Beyond HER2: targeting the ErbB receptor family in breast cancer. Cancer Treat Rev. 109, 102436 (2022).
pubmed: 35870237
pmcid: 10478787
doi: 10.1016/j.ctrv.2022.102436
Diwanji, D. et al. Structures of the HER2–HER3–NRG1β complex reveal a dynamic dimer interface. Nature 600, 339–343 (2021).
pubmed: 34759323
pmcid: 9298180
doi: 10.1038/s41586-021-04084-z
Weitsman, G. et al. HER2-HER3 dimer quantification by FLIM-FRET predicts breast cancer metastatic relapse independently of HER2 IHC status. Oncotarget 7, 51012–51026 (2016).
pubmed: 27618787
pmcid: 5239455
doi: 10.18632/oncotarget.9963
Griguolo, G. et al. ERBB2 mRNA expression and response to ado-trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Cancers (Basel) 12, 1902 (2020).
pubmed: 32674482
doi: 10.3390/cancers12071902
Modi, S. et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N. Engl.J. Med. 387, 9–20 (2022).
pubmed: 35665782
pmcid: 10561652
doi: 10.1056/NEJMoa2203690
Hurvitz, S. A. et al. TRIO-US B-12 TALENT: Phase II neoadjuvant trial evaluating trastuzumab deruxtecan with or without anastrozole for HER2-low, HR+ early stage breast cancer. J. Clin. Oncol. 39, TPS603–TPS603 (2021).
doi: 10.1200/JCO.2021.39.15_suppl.TPS603
Geyer, C. E. et al. Abstract OT-03-01: Trastuzumab deruxtecan (T-DXd; DS-8201) vs trastuzumab emtansine (T-DM1) in high-risk patients with HER2-positive, residual invasive early breast cancer after neoadjuvant therapy: a randomized, phase 3 trial (DESTINY-Breast05). Cancer Res. 81, OT-03-01 (2021).
Iwata, H. et al. Phase 1/2 Study of HER3-DXd in HER3-expressing metastatic breast cancer: subgroup analysis by HER2 expression. Japan. Soc. Med. Oncol. (2023).
Mosele, F. et al. Trastuzumab deruxtecan in metastatic breast cancer with variable HER2 expression: the phase 2 DAISY trial. Nat. Med. 29, 2110–2120 (2023).
pubmed: 37488289
pmcid: 10427426
doi: 10.1038/s41591-023-02478-2
Diéras, V. et al. Abstract PD8-02: Trastuzumab deruxtecan (T-DXd) for advanced breast cancer patients (ABC), regardless HER2 status: a phase II study with biomarkers analysis (DAISY). Cancer Res. 82, PD8–PD02 (2022).
doi: 10.1158/1538-7445.SABCS21-PD8-02
Salgado, R. et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann. Oncol. 26, 259–271 (2015).
pubmed: 25214542
doi: 10.1093/annonc/mdu450
Dieci, M. V. et al. Update on tumor-infiltrating lymphocytes (TILs) in breast cancer, including recommendations to assess TILs in residual disease after neoadjuvant therapy and in carcinoma in situ: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer. Semin. Cancer Biol. 52, 16–25 (2018).
Wolff, A. C. et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society Of Clinical Oncology/College of American Pathologists clinical practice guideline focused update. J. Clin. Oncol. 36, 2105–2122 (2018).
pubmed: 29846122
doi: 10.1200/JCO.2018.77.8738
Geiss, G. K. et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 26, 317–325 (2008).
pubmed: 18278033
doi: 10.1038/nbt1385
Prat, A. et al. Development and validation of the new HER2DX assay for predicting pathological response and survival outcome in early-stage HER2-positive breast cancer. EBioMedicine 75, 103801 (2022).
pubmed: 34990895
pmcid: 8741424
doi: 10.1016/j.ebiom.2021.103801
Parker, J. S. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27, 1160–1167 (2009).
pubmed: 19204204
pmcid: 2667820
doi: 10.1200/JCO.2008.18.1370
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168
pmcid: 2705234
doi: 10.1093/bioinformatics/btp324
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199
pmcid: 2928508
doi: 10.1101/gr.107524.110
Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401 (2012).
pubmed: 22588877
doi: 10.1158/2159-8290.CD-12-0095