Occurrence of cancer in Marfan syndrome: Report of two patients with neuroblastoma and review of the literature.
FBN1
Marfan syndrome (MFS)
cancer predisposition
neuroblastoma
Journal
American journal of medical genetics. Part A
ISSN: 1552-4833
Titre abrégé: Am J Med Genet A
Pays: United States
ID NLM: 101235741
Informations de publication
Date de publication:
11 Jul 2024
11 Jul 2024
Historique:
revised:
15
06
2024
received:
23
01
2024
accepted:
25
06
2024
medline:
11
7
2024
pubmed:
11
7
2024
entrez:
11
7
2024
Statut:
aheadofprint
Résumé
Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder caused by pathogenic variants in FBN1, with a hitherto unknown association with cancer. Here, we present two females with MFS who developed pediatric neuroblastoma. Patient 1 presented with neonatal MFS and developed an adrenal neuroblastoma with unfavorable tumor genetics at 10 months of age. Whole genome sequencing revealed a germline de novo missense FBN1 variant (NP_000129.3:p.(Asp1322Asn)), resulting in intron 32 inclusion and exon 32 retention. Patient 2 was diagnosed with classic MFS, caused by a germline de novo frameshift variant in FBN1 (NP_000129.3:p.(Cys805Ter)). At 18 years, she developed high-risk neuroblastoma with a somatic ALK pathogenic variant (NP_004295.2:p.(Arg1275Gln)). We identified 32 reported cases of MFS with cancer in PubMed, yet none with neuroblastoma. Among patients, we observed an early cancer onset and high frequency of MFS complications. We also queried cancer databases for somatic FBN1 variants, finding 49 alterations reported in PeCan, and variants in 2% of patients in cBioPortal. In conclusion, we report the first two patients with MFS and neuroblastoma and highlight an early age at cancer diagnosis in reported patients with MFS. Further epidemiological and functional studies are needed to clarify the growing evidence linking MFS and cancer.
Identifiants
pubmed: 38990105
doi: 10.1002/ajmg.a.63812
doi:
Types de publication
Case Reports
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e63812Subventions
Organisme : Barncancerfonden
ID : PR2022-0027
Organisme : Cancerfonden
ID : 222057PJ
Organisme : Cancerföreningen i Stockholm
ID : 211293
Organisme : Vetenskapsrådet
ID : 2021-02860
Organisme : Region Stockholm
ID : 51024
Organisme : Sällsyntafonden
Organisme : Berth von Kantzow's foundation
Organisme : Karolinska Institutet
Organisme : Stiftelsen Frimurare Barnhuset i Stockholm
Organisme : Hållsten forskningsstiftelse
Informations de copyright
© 2024 The Author(s). American Journal of Medical Genetics Part A published by Wiley Periodicals LLC.
Références
Baba, A. B., Rah, B., Bhat, G. R., Mushtaq, I., Parveen, S., Hassan, R., Hameed Zargar, M., & Afroze, D. (2022). Transforming growth factor‐beta (TGF‐β) signaling in cancer‐a betrayal within. Frontiers in Pharmacology, 13, 579. https://doi.org/10.3389/FPHAR.2022.791272/BIBTEX
Booms, P., Cisler, J., Mathews, K. R., Godfrey, M., Tiecke, F., Kaufmann, U. C., Vetter, U., Hagemeier, C., & Robinson, P. N. (1999). Novel exon skipping mutation in the fibrillin‐1 gene: Two ‘hot spots’ for the neonatal Marfan syndrome. Clinical Genetics, 55(2), 110–117. https://doi.org/10.1034/J.1399-0004.1999.550207.X
Brunak, S., Engelbrecht, J., & Knudsen, S. (1991). Prediction of human mRNA donor and acceptor sites from the DNA sequence. Journal of Molecular Biology, 220(1), 49–65. https://doi.org/10.1016/0022-2836(91)90380-O
Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., Jacobsen, A., Byrne, C. J., Heuer, M. L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A. P., Sander, C., & Schultz, N. (2012). The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401–404. https://doi.org/10.1158/2159-8290.CD-12-0095
Collod‐Béroud, G., Le Bourdelles, S., Ades, L., Ala‐Kokko, L., Booms, P., Boxer, M., Child, A., Comeglio, P., De Paepe, A., Hyland, J. C., Holman, K., Kaitila, I., Loeys, B., Matyas, G., Nuytinck, L., Peltonen, L., Rantamaki, T., Robinson, P., Steinmann, B., … Boileau, C. (2003). Update of the UMD‐FBN1 mutation database and creation of an FBN1 polymorphism database. Human Mutation, 22(3), 199–208. https://doi.org/10.1002/HUMU.10249
Desmet, F. O., Hamroun, D., Lalande, M., Collod‐Bëroud, G., Claustres, M., & Béroud, C. (2009). Human splicing finder: An online bioinformatics tool to predict splicing signals. Nucleic Acids Research, 37(9), e67. https://doi.org/10.1093/NAR/GKP215
Faivre, L., Collod‐Beroud, G., Loeys, B. L., Child, A., Binquet, C., Gautier, E., Callewaert, B., Arbustini, E., Mayer, K., Arslan‐Kirchner, M., Kiotsekoglou, A., Comeglio, P., Marziliano, N., Dietz, H. C., Halliday, D., Beroud, C., Bonithon‐Kopp, C., Claustres, M., Muti, C., … Boileau, C. (2007). Effect of mutation type and location on clinical outcome in 1,013 probands with Marfan syndrome or related phenotypes and FBN1 mutations: An international study. The American Journal of Human Genetics, 81(3), 454–466. https://doi.org/10.1086/520125
Greengard, E. G., Perrino, M. R., & Park, J. R. (2010). ALK‐related Neuroblastic tumor susceptibility. In M. P. Adam, J. Feldman, G. M. Mirzaa, et al. (Eds.), GeneReviews®. University of Washington. 1993–2024. https://www.ncbi.nlm.nih.gov/books/NBK24599/
Heide, H. T., Schrander‐Stumpel, C. T. R. M., Pals, G., & Delhaas, T. (2005). Neonatal Marfan syndrome: Clinical report and review of the literature. Clinical Dysmorphology, 14(2), 81–84. https://doi.org/10.1097/00019605-200504000-00005
Hsu, C. W., Wang, J. C., Liao, W. I., Chien, W. C., Chung, C. H., Tsao, C. H., Wu, Y. F., Liao, M. T., & Tsai, S. H. (2017). Association between malignancies and Marfan syndrome: A population‐based, nested case–control study in Taiwan. BMJ Open, 7(10), e017243. https://doi.org/10.1136/BMJOPEN-2017-017243
Janoueix‐Lerosey, I., Lequin, D., Brugières, L., Ribeiro, A., de Pontual, L., Combaret, V., Raynal, V., Puisieux, A., Schleiermacher, G., Pierron, G., Valteau‐Couanet, D., Frebourg, T., Michon, J., Lyonnet, S., Amiel, J., & Delattre, O. (2008). Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature, 455(7215), 967–970. https://doi.org/10.1038/nature07398
Jensen, S. A., Atwa, O., & Handford, P. A. (2021). Assembly assay identifies a critical region of human fibrillin‐1 required for 10–12 nm diameter microfibril biogenesis. PLoS One, 16(3), e0248532. https://doi.org/10.1371/JOURNAL.PONE.0248532
Liu, W., Qian, C., Comeau, K., Brenn, T., Furthmayr, H., & Francke, U. (1996). Mutant fibrillin‐1 monomers lacking EGF‐like domains disrupt microfibril assembly and cause severe marfan syndrome. Human Molecular Genetics, 5(10), 1581–1587. https://doi.org/10.1093/HMG/5.10.1581
Milewicz, D. M., Braverman, A. C., De Backer, J., Morris, S. A., Boileau, C., Maumenee, I. H., Jondeau, G., Evangelista, A., Pyeritz, R. E., & De Backer, J. (2021). Marfan syndrome. Nature Reviews Disease Primers, 7(1), 1–24. https://doi.org/10.1038/s41572-021-00298-7
Mossé, Y. P., Laudenslager, M., Longo, L., Cole, K. A., Wood, A., Attiyeh, E. F., Laquaglia, M. J., Sennett, R., Lynch, J. E., Perri, P., Laureys, G., Speleman, F., Kim, C., Hou, C., Hakonarson, H., Torkamani, A., Schork, N. J., Brodeur, G. M., Tonini, G. P., … Maris, J. M. (2008). Identification of ALK as a major familial neuroblastoma predisposition gene. Nature, 455(7215), 930–935. https://doi.org/10.1038/nature07261
National Cancer Institute, S. R. P. (2023). SEER*Explorer: An interactive website for SEER cancer statistics. Data source(s): SEER Incidence Data, November 2022 Submission (1975–2020), SEER 22 registries. https://seer.cancer.gov/statistics-network/explorer/ [updated: 2023 Nov 16]
Navalkele, P., O'Dorisio, M. S., O'Dorisio, T. M., Zamba, G. K. D., & Lynch, C. F. (2011). Incidence, survival, and prevalence of neuroendocrine tumors versus neuroblastoma in children and young adults: Nine standard SEER registries, 1975–2006. Pediatric Blood & Cancer, 56(1), 50–57. https://doi.org/10.1002/pbc.22559
O'Donohue, T., Gulati, N., Mauguen, A., Kushner, B. H., Shukla, N., Rodriguez‐Sanchez, M. I., Bouvier, N., Roberts, S., Basu, E., Cheung, N.‐K., & Modak, S. (2021). Differential impact of ALK mutations in Neuroblastoma. JCO Precision Oncology, 5, 492–500. https://doi.org/10.1200/PO.20.00181
Postema, F. A. M., Hopman, S. M. J., Hennekam, R. C., & Merks, J. H. M. (2018). Consequences of diagnosing a tumor predisposition syndrome in children with cancer: A literature review. Pediatric Blood & Cancer, 65(1), e26718. https://doi.org/10.1002/pbc.26718
Ramirez, F., Caescu, C., Wondimu, E., & Galatioto, J. (2018). Marfan syndrome; a connective tissue disease at the crossroads of mechanotransduction, TGFβ signaling and cell stemness. Matrix Biology: Journal of the International Society for Matrix Biology, 71–72, 82–89. https://doi.org/10.1016/J.MATBIO.2017.07.004
Sakai, L. Y., Keene, D. R., Renard, M., & De Backer, J. (2016). FBN1: The disease‐causing gene for Marfan syndrome and other genetic disorders. Gene, 591(1), 279–291. https://doi.org/10.1016/J.GENE.2016.07.033
Sengle, G., & Sakai, L. Y. (2015). The fibrillin microfibril scaffold: A niche for growth factors and mechanosensation? Matrix Biology, 47, 3–12. https://doi.org/10.1016/J.MATBIO.2015.05.002
Shi, X., Yang, J., Deng, S., Xu, H., Wu, D., Zeng, Q., Wang, S., Hu, T., Wu, F., & Zhou, H. (2022). TGF‐β signaling in the tumor metabolic microenvironment and targeted therapies. Journal of Hematology & Oncology, 15(1), 135. https://doi.org/10.1186/s13045-022-01349-6
Takeda, N., Yagi, H., Hara, H., Fujiwara, T., Fujita, D., Nawata, K., Inuzuka, R., Taniguchi, Y., Harada, M., Toko, H., Akazawa, H., & Komuro, I. (2016). Pathophysiology and management of cardiovascular manifestations in Marfan and Loeys–Dietz syndromes. International Heart Journal, 57(3), 271–277. https://doi.org/10.1536/IHJ.16-094
Tiecke, F., Katzke, S., Booms, P., Robinson, P. N., Neumann, L., Godfrey, M., Mathews, K. R., Scheuner, M., Hinkel, G. K., Brenner, R. E., Hövels‐Gürich, H. H., Hagemeier, C., Fuchs, J., Skovby, F., & Rosenberg, T. (2001). Classic, atypically severe and neonatal Marfan syndrome: Twelve mutations and genotype‐phenotype correlations in FBN1 exons 24‐40. European Journal of Human Genetics, 9(1), 13–21. https://doi.org/10.1038/SJ.EJHG.5200582
Wadensten, E., Wessman, S., Abel, F., Diaz De Ståhl, T., Tesi, B., Orsmark Pietras, C., Arvidsson, L., Taylan, F., Fransson, S., Vogt, H., Poluha, A., Pradhananga, S., Hellberg, M., Lagerstedt‐Robinson, K., Raj Somarajan, P., Samuelsson, S., Orrsjö, S., Maqbool, K., Henning, K., … Gisselsson, D. (2023). Diagnostic yield from a Nationwide implementation of precision medicine for all children with cancer. JCO Precision Oncology, 7, e2300039. https://doi.org/10.1200/PO.23.00039
Yan, P., Qi, F., Bian, L., Xu, Y., Zhou, J., Hu, J., Ren, L., Li, M., & Tang, W. (2020). Comparison of incidence and outcomes of neuroblastoma in children, adolescents, and adults in the United States: A surveillance, epidemiology, and end results (SEER) program population study. Medical Science Monitor, 26, e927218. https://doi.org/10.12659/MSM.927218