Skin cancer risk after hematopoietic stem cell transplantation: a systematic review and meta-analysis.

allogeneic transplant autologous transplant basal cell carcinoma cutaneous neoplasm melanoma squamous cell carcinoma standardized incidence ratio

Journal

International journal of dermatology
ISSN: 1365-4632
Titre abrégé: Int J Dermatol
Pays: England
ID NLM: 0243704

Informations de publication

Date de publication:
10 Jul 2024
Historique:
revised: 19 06 2024
received: 27 04 2024
accepted: 26 06 2024
medline: 11 7 2024
pubmed: 11 7 2024
entrez: 10 7 2024
Statut: aheadofprint

Résumé

Hematopoietic stem cell transplantation (HSCT) has improved outcomes for severe hematologic, malignant, and immune disorders, yet poses an increased risk of subsequent malignancies. This study aimed to examine the risk of skin cancer following HSCT and identify potential risk factors. The search was conducted in MEDLINE, EMBASE, and CINAHL databases until December 2023. Cohort studies reporting standardized incidence ratios (SIRs) for post-HSCT skin cancer or investigating risk factors were included. SIRs, or hazard ratios (HRs) with 95% confidence interval (CI), were calculated using random-effects inverse-variance models. Outcome endpoints were SIRs of skin cancer post-HSCT and risk factors, including gender, chronic graft-versus-host disease (cGVHD), voriconazole exposure, and total body irradiation (TBI). Twenty-six studies involving 164,944 HSCT recipients (allogeneic HSCT, n = 68,637; autologous HSCT, n = 95,435; mean age: 38.5 ± 13.8 years; 71,354 females [43.3%]) were analyzed. Overall, SIR for skin cancer post-HSCT was 7.21 (95% CI 3.98-13.08), with SIRs of 2.25 (95% CI: 1.37-3.68) for autologous HSCT, and 10.18 (95% CI 5.07-20.43) for allogeneic HSCT. Risk factors for skin cancer risk included cGVHD (HR = 2.86 [95% CI: 2.01-4.07]), specifically for basal cell and squamous cell carcinoma (SCC) (HR = 1.80 [95% CI: 1.31-2.46] and HR = 3.68 [95% CI: 2.39-5.68], respectively), male gender (HR = 1.56 [95% CI: 1.15-2.13]), especially for SCC (HR = 1.70 [95% CI: 1.03-2.80]), and voriconazole exposure (HR = 2.01 [95% CI: 1.12-3.61]). TBI showed no statistically significant association with subsequent skin cancer (HR = 1.12 [95% CI: 0.73-1.71]). These findings highlight the importance of rigorous skin cancer surveillance and preventive strategies in HSCT recipients, particularly in male individuals undergoing allogeneic transplants and those with identifiable risk factors, to enable early detection and intervention.

Identifiants

pubmed: 38987869
doi: 10.1111/ijd.17371
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024 the International Society of Dermatology.

Références

Duarte RF, Labopin M, Bader P, Basak GW, Bonini C, Chabannon C, et al. Indications for haematopoietic stem cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2019. Bone Marrow Transplant. 2019;54(10):1525–1552.
Wingard JR, Majhail NS, Brazauskas R, Wang Z, Sobocinski KA, Jacobsohn D, et al. Long‐term survival and late deaths after allogeneic hematopoietic cell transplantation. J Clin Oncol. 2011;29(16):2230–2239.
Majhail NS. Long‐term complications after hematopoietic cell transplantation. Hematol Oncol Stem Cell Ther. 2017;10(4):220–227.
DePry JL, Vyas R, Lazarus HM, Caimi PF, Gerstenblith MR, Bordeaux JS. Cutaneous malignant neoplasms in hematopoietic cell transplant recipients: a systematic review. JAMA Dermatol. 2015;151(7):775–782.
Szlauer‐Stefańska A, Kamińska‐Winciorek G, Giebel S, Bagłaj M. Secondary skin neoplasms in patients after autologous and allogeneic hematopoietic stem cell transplantation procedures. Adv Clin Exp Med. 2020;29(10):1221–1230.
Heydari K, Shamshirian A, Foroushani PL, Aref A, Omran AH, Ahmadi M, et al. The risk of malignancies in patients receiving hematopoietic stem cell transplantation: a systematic review and meta‐analysis. Clin Transl Oncol. 2020;22(10):1825–1837.
Higgins JP, Thompson SG. Quantifying heterogeneity in a meta‐analysis. Stat Med. 2002;21(11):1539–1558.
Furuya‐Kanamori L, Barendregt JJ. A new improved graphical and quantitative method for detecting bias in meta‐analysis. Int J Evid Based Healthc. 2018;16(4):195–203.
Chen MH, Chang PM, Li WY, Hsiao LT, Hong YC, Liu CY, et al. High incidence of oral squamous cell carcinoma independent of HPV infection after allogeneic hematopoietic SCT in Taiwan. Bone Marrow Transplant. 2010;46(4):567–572.
Rizzo JD, Curtis RE, Socié G, Sobocinski KA, Gilbert E, Landgren O, et al. Solid cancers after allogeneic hematopoietic cell transplantation. Blood. 2009;113(5):1175–1183.
Wojenski DJ, Bartoo GT, Merten JA, Dierkhising RA, Barajas MR, El‐Azhary RA, et al. Voriconazole exposure and the risk of cutaneous squamous cell carcinoma in allogeneic hematopoietic stem cell transplant patients. Transpl Infect Dis. 2015;17(2):250–258.
Lupo‐Stanghellini MT, Greco R, Assanelli AA, Perini T, Guggiari E, Lorentino F, et al. Voriconazole and non‐melanoma skin cancer after allogeneic HSCT: results of a prospective dedicated follow‐up program in 302 patients. Blood. 2016;128(22):3442.
Leisenring W, Friedman DL, Flowers ME, Schwartz JL, Deeg HJ. Nonmelanoma skin and mucosal cancers after hematopoietic cell transplantation. J Clin Oncol. 2006;24(7):1119–1126.
Bilmon IA, Ashton LJ, Le Marsney RE, Dodds AJ, O'Brien TA, Wilcox L, et al. Second cancer risk in adults receiving autologous haematopoietic SCT for cancer: a population‐based cohort study. Bone Marrow Transplant. 2014;49(5):691–698.
Vajdic CM, Mayson E, Dodds AJ, O'Brien T, Wilcox L, Nivison‐Smith I, et al. Second cancer risk and late mortality in adult Australians receiving allogeneic hematopoietic stem cell transplantation: a population‐based cohort study. Biol Blood Marrow Transplant. 2016;22(5):949–956.
Atsuta Y, Suzuki R, Yamashita T, Fukuda T, Miyamura K, Taniguchi S, et al. Continuing increased risk of oral/esophageal cancer after allogeneic hematopoietic stem cell transplantation in adults in association with chronic graft‐versus‐host disease. Ann Oncol. 2014;25(2):435–441.
Baker KS, DeFor TE, Burns LJ, Ramsay NK, Neglia JP, Robison LL. New malignancies after blood or marrow stem‐cell transplantation in children and adults: incidence and risk factors. J Clin Oncol. 2003;21(7):1352–1358.
Deeg HJ, Socié G, Schoch G, Henry‐Amar M, Witherspoon RP, Devergie A, et al. Malignancies after marrow transplantation for aplastic anemia and fanconi anemia: a joint Seattle and Paris analysis of results in 700 patients. Blood. 1996;87(1):386–392.
Mahindra A, Raval G, Mehta P, Brazauskas R, Zhang MJ, Zhong X, et al. New cancers after autotransplantations for multiple myeloma. Biol Blood Marrow Transplant. 2015;21(4):738–745.
Ringdén O, Brazauskas R, Wang Z, Ahmed I, Atsuta Y, Buchbinder D, et al. Second solid cancers after allogeneic hematopoietic cell transplantation using reduced‐intensity conditioning. Biol Blood Marrow Transplant. 2014;20(11):1777–1784.
Tward JD, Wendland MMM, Shrieve DC, Szabo A, Gaffney DK. The risk of secondary malignancies over 30 years after the treatment of non‐Hodgkin lymphoma. Cancer. 2006;107:108–115.
Yokota A, Ozawa S, Masanori T, Akiyama H, Ohshima K, Kanda Y, et al. Secondary solid tumors after allogeneic hematopoietic SCT in Japan. Bone Marrow Transplant. 2012;47(1):95–100.
Tanaka Y, Kurosawa S, Tajima K, Tanaka T, Ito R, Inoue Y, et al. Increased incidence of oral and gastrointestinal secondary cancer after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2017;52(5):789–791.
Wareham NE, Li Q, Sengeløv H, Da Cunha‐Bang C, Gustafsson F, Heilmann C, et al. Risk of de novo or secondary cancer after solid organ or allogeneic haematopoietic stem cell transplantation. J Cancer Res Clin Oncol. 2019;145(12):3125–3135.
Kahn JM, Brazauskas R, Tecca HR, Bo‐Subait S, Buchbinder D, Battiwala M, et al. Subsequent neoplasms and late mortality in children undergoing allogeneic transplantation for nonmalignant diseases. Blood Adv. 2020;4(9):2084–2094.
Chien SH, Liu CJ, Hong YC, Teng CJ, Hu YW, Shen CC, et al. Use of azathioprine for graft‐vs‐host disease is the major risk for development of secondary malignancies after haematopoietic stem cell transplantation: a nationwide population‐based study. Br J Cancer. 2014;112(1):177–184.
Curtis RE, Rowlings PA, Deeg HJ, Shriner DA, Socíe G, Travis LB, et al. Solid cancers after bone marrow transplantation. N Engl J Med. 1997;336(13):897–904.
Copelan EA. Hematopoietic stem‐cell transplantation. N Engl J Med. 2006;354(17):1813–1826.
Scott JF, Brough KR, Grigoryan KV, Muzic JG, Kim GY, Conic RR, et al. Risk factors for keratinocyte carcinoma in recipients of allogeneic hematopoietic cell transplants. JAMA Dermatol. 2020;156(6):631–639.
Kuklinski LF, Li S, Karagas MR, Weng WK, Kwong BY. Effect of voriconazole on risk of nonmelanoma skin cancer after hematopoietic cell transplantation. J Am Acad Dermatol. 2017;77(4):706–712.
Schwartz JL, Kopecky KJ, Mathes RW, Leisenring WM, Friedman DL, Deeg HJ. Basal cell skin cancer after total‐body irradiation and hematopoietic cell transplantation. Radiat Res. 2009;171(2):155–163.
Wu PA, Stern RS, Huang V, Liu KX, Chen CA, Tzachanis D, et al. Reduced‐intensity conditioning regimens, prior chronic lymphocytic leukemia, and graft‐versus‐host disease are associated with higher rates of skin cancer after allogeneic hematopoietic stem cell transplantation. J Invest Dermatol. 2019;139(3):591–599.
Hasegawa W, Pond GR, Rifkind JT, Messner HA, Lau A, Daly AS, et al. Long‐term follow‐up of secondary malignancies in adults after allogeneic bone marrow transplantation. Bone Marrow Transplant. 2005;35(1):51–55.
Jagasia MH, Greinix HT, Arora M, Williams KM, Wolff D, Cowen EW, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft‐versus‐Host Disease: I. The 2014 Diagnosis and Staging Working Group Report. Biol Blood Marrow Transplant. 2015;21(3):389–401.
Curtis RE, Metayer C, Rizzo JD, Socié G, Sobocinski KA, Flowers ME, et al. Impact of chronic GVHD therapy on the development of squamous‐cell cancers after hematopoietic stem‐cell transplantation: an international case‐control study. Blood. 2005;105(10):3802–3811.
Rodgers CJ, Burge S, Scarisbrick J, Peniket A. More than skin deep? Emerging therapies for chronic cutaneous GVHD. Bone Marrow Transplant. 2012;48(3):323–337.
Kolb HJ, Socié G, Duell T, Van Lint MT, Tichelli A, Apperley JF, et al. Malignant neoplasms in long‐term survivors of bone marrow transplantation. Late Effects Working Party of the European Cooperative Group for Blood and Marrow Transplantation and the European Late Effect Project Group. Ann Intern Med. 1999;131(10):738–744.
de Gálvez MV, Aguilera J, Bernabó JL, Sánchez‐Roldán C, Herrera‐Ceballos E. Human hair as a natural sun protection agent: a quantitative study. Photochem Photobiol. 2015;91(4):966–970.
Thornton MJ. The biological actions of estrogens on skin. Exp Dermatol. 2002;11(6):487–502.
Falk M, Anderson CD. Influence of age, gender, educational level and self‐estimation of skin type on sun exposure habits and readiness to increase sun protection. Cancer Epidemiol. 2013;37(2):127–132.
Galdas PM, Cheater F, Marshall P. Men and health help‐seeking behaviour: literature review. J Adv Nurs. 2005;49(6):616–623.
Tang H, Shi W, Song Y, Han J. Voriconazole exposure and risk of cutaneous squamous cell carcinoma among lung or hematopoietic cell transplant patients: a systematic review and meta‐analysis. J Am Acad Dermatol. 2019;80(2):500–507.
Ona K, Oh DH. Voriconazole N‐oxide and its ultraviolet B photoproduct sensitize keratinocytes to ultraviolet A. Br J Dermatol. 2015;173(3):751–759.
Haylett AK, Felton S, Denning DW, Rhodes LE. Voriconazole‐induced photosensitivity: photobiological assessment of a case series of 12 patients. Br J Dermatol. 2013;168(1):179–185.
Karagas MR, McDonald JA, Greendberg ER, Stukel TA, Weiss JE, Baron JA, et al. Risk of basal cell and squamous cell skin cancers after ionizing radiation therapy. J Natl Cancer Inst. 1996;88(24):1848–1853.
Thiagarajan A, Iyer NG. Genomics of radiation sensitivity in squamous cell carcinomas. Pharmacogenomics. 2019;20(6):457–466.

Auteurs

Miguel Mansilla-Polo (M)

Department of Dermatology, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
Instituto de Investigación Sanitaria (IIS) La Fe, Valencia, Spain.
Department of Dermatology, Universitat de València, Valencia, Spain.

Javier López-Davia (J)

Department of Dermatology, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
Instituto de Investigación Sanitaria (IIS) La Fe, Valencia, Spain.

Blanca De Unamuno-Bustos (B)

Department of Dermatology, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
Instituto de Investigación Sanitaria (IIS) La Fe, Valencia, Spain.

Daniel Martín-Torregrosa (D)

Department of Dermatology, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
Instituto de Investigación Sanitaria (IIS) La Fe, Valencia, Spain.

Carlos Abril-Pérez (C)

Department of Dermatology, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
Instituto de Investigación Sanitaria (IIS) La Fe, Valencia, Spain.

Yasmin Ezzatvar (Y)

Department of Nursing, Universitat de València, Valencia, Spain.

Rafael Botella-Estrada (R)

Department of Dermatology, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
Instituto de Investigación Sanitaria (IIS) La Fe, Valencia, Spain.
Department of Dermatology, Universitat de València, Valencia, Spain.

Classifications MeSH