An end-to-end approach for single-cell infrared absorption spectroscopy of bacterial inclusion bodies: from AFM-IR measurement to data interpretation of large sample sets.


Journal

Journal of nanobiotechnology
ISSN: 1477-3155
Titre abrégé: J Nanobiotechnology
Pays: England
ID NLM: 101152208

Informations de publication

Date de publication:
10 Jul 2024
Historique:
received: 13 03 2024
accepted: 25 06 2024
medline: 11 7 2024
pubmed: 11 7 2024
entrez: 10 7 2024
Statut: epublish

Résumé

Inclusion bodies (IBs) are well-known subcellular structures in bacteria where protein aggregates are collected. Various methods have probed their structure, but single-cell spectroscopy remains challenging. Atomic Force Microscopy-based Infrared Spectroscopy (AFM-IR) is a novel technology with high potential for the characterisation of biomaterials such as IBs. We present a detailed investigation using AFM-IR, revealing the substructure of IBs and their variation at the single-cell level, including a rigorous optimisation of data collection parameters and addressing issues such as laser power, pulse frequency, and sample drift. An analysis pipeline was developed tailored to AFM-IR image data, allowing high-throughput, label-free imaging of more than 3500 IBs in 12,000 bacterial cells. We examined IBs generated in Escherichia coli under different stress conditions. Dimensionality reduction analysis of the resulting spectra suggested distinct clustering of stress conditions, aligning with the nature and severity of the applied stresses. Correlation analyses revealed intricate relationships between the physical and morphological properties of IBs. Our study highlights the power and limitations of AFM-IR, revealing structural heterogeneity within and between IBs. We show that it is possible to perform quantitative analyses of AFM-IR maps over a large collection of different samples and determine how to control for various technical artefacts.

Sections du résumé

BACKGROUND BACKGROUND
Inclusion bodies (IBs) are well-known subcellular structures in bacteria where protein aggregates are collected. Various methods have probed their structure, but single-cell spectroscopy remains challenging. Atomic Force Microscopy-based Infrared Spectroscopy (AFM-IR) is a novel technology with high potential for the characterisation of biomaterials such as IBs.
RESULTS RESULTS
We present a detailed investigation using AFM-IR, revealing the substructure of IBs and their variation at the single-cell level, including a rigorous optimisation of data collection parameters and addressing issues such as laser power, pulse frequency, and sample drift. An analysis pipeline was developed tailored to AFM-IR image data, allowing high-throughput, label-free imaging of more than 3500 IBs in 12,000 bacterial cells. We examined IBs generated in Escherichia coli under different stress conditions. Dimensionality reduction analysis of the resulting spectra suggested distinct clustering of stress conditions, aligning with the nature and severity of the applied stresses. Correlation analyses revealed intricate relationships between the physical and morphological properties of IBs.
CONCLUSIONS CONCLUSIONS
Our study highlights the power and limitations of AFM-IR, revealing structural heterogeneity within and between IBs. We show that it is possible to perform quantitative analyses of AFM-IR maps over a large collection of different samples and determine how to control for various technical artefacts.

Identifiants

pubmed: 38987828
doi: 10.1186/s12951-024-02674-3
pii: 10.1186/s12951-024-02674-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

406

Subventions

Organisme : Fonds Wetenschappelijk Onderzoek
ID : 1128822N
Organisme : Fonds Wetenschappelijk Onderzoek
ID : I011220N

Informations de copyright

© 2024. The Author(s).

Références

Prouty WF, Karnovsky MJ, Goldberg AL. Degradation of abnormal proteins in Escherichia coli. Formation of protein inclusions in cells exposed to amino acid analogs. J Biol Chem. 1975;250(3):1112–22.
pubmed: 1089651 doi: 10.1016/S0021-9258(19)41897-8
Schramm FD, Schroeder K, Jonas K. Protein aggregation in bacteria. FEMS Microbiol Rev. 2020;44(1):54–72.
pubmed: 31633151 doi: 10.1093/femsre/fuz026
Lindner AB, Madden R, Demarez A, Stewart EJ, Taddei F. Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc Natl Acad Sci U S A. 2008;105(8):3076–81.
pubmed: 18287048 pmcid: 2268587 doi: 10.1073/pnas.0708931105
Carrio MM, Villaverde A. Role of molecular chaperones in inclusion body formation. FEBS Lett. 2003;537(1–3):215–21.
pubmed: 12606060 doi: 10.1016/S0014-5793(03)00126-1
Stewart EJ, Madden R, Paul G, Taddei F. Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol. 2005;3(2):e45.
pubmed: 15685293 pmcid: 546039 doi: 10.1371/journal.pbio.0030045
Peternel S, Grdadolnik J, Gaberc-Porekar V, Komel R. Engineering inclusion bodies for non denaturing extraction of functional proteins. Microb Cell Fact. 2008;7:34.
pubmed: 19046444 pmcid: 2630956 doi: 10.1186/1475-2859-7-34
Unzueta U, Cespedes MV, Sala R, Alamo P, Sanchez-Chardi A, Pesarrodona M, et al. Release of targeted protein nanoparticles from functional bacterial amyloids: a death star-like approach. J Control Release. 2018;279:29–39.
pubmed: 29641987 doi: 10.1016/j.jconrel.2018.04.004
Villaverde A, Garcia-Fruitos E, Rinas U, Seras-Franzoso J, Kosoy A, Corchero JL, et al. Packaging protein drugs as bacterial inclusion bodies for therapeutic applications. Microb Cell Fact. 2012;11:76.
pubmed: 22686540 pmcid: 3538617 doi: 10.1186/1475-2859-11-76
Khodaparast L, Khodaparast L, Gallardo R, Louros NN, Michiels E, Ramakrishnan R, et al. Aggregating sequences that occur in many proteins constitute weak spots of bacterial proteostasis. Nat Commun. 2018;9(1):866.
pubmed: 29491361 pmcid: 5830399 doi: 10.1038/s41467-018-03131-0
Wang L, Maji SK, Sawaya MR, Eisenberg D, Riek R. Bacterial inclusion bodies contain amyloid-like structure. PLoS Biol. 2008;6(8):e195.
pubmed: 18684013 pmcid: 2494559 doi: 10.1371/journal.pbio.0060195
Pouplana S, Espargaro A, Galdeano C, Viayna E, Sola I, Ventura S, et al. Thioflavin-S staining of bacterial inclusion bodies for the fast, simple, and inexpensive screening of amyloid aggregation inhibitors. Curr Med Chem. 2014;21(9):1152–9.
pubmed: 24059241 doi: 10.2174/09298673113206660256
Garcia-Fruitos E, Gonzalez-Montalban N, Morell M, Vera A, Ferraz RM, Aris A, et al. Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Fact. 2005;4:27.
pubmed: 16156893 pmcid: 1224866 doi: 10.1186/1475-2859-4-27
Carrio MM, Villaverde A. Localization of chaperones DnaK and GroEL in bacterial inclusion bodies. J Bacteriol. 2005;187(10):3599–601.
pubmed: 15866952 pmcid: 1111989 doi: 10.1128/JB.187.10.3599-3601.2005
Morell M, Bravo R, Espargaro A, Sisquella X, Aviles FX, Fernandez-Busquets X, et al. Inclusion bodies: specificity in their aggregation process and amyloid-like structure. Biochim Biophys Acta. 2008;1783(10):1815–25.
pubmed: 18619498 doi: 10.1016/j.bbamcr.2008.06.007
Govers SK, Mortier J, Adam A, Aertsen A. Protein aggregates encode epigenetic memory of stressful encounters in individual Escherichia coli cells. PLoS Biol. 2018;16(8):e2003853.
pubmed: 30153247 pmcid: 6112618 doi: 10.1371/journal.pbio.2003853
Ami D, Natalello A, Taylor G, Tonon G, Maria Doglia S. Structural analysis of protein inclusion bodies by Fourier transform infrared microspectroscopy. Biochim Biophys Acta. 2006;1764(4):793–9.
pubmed: 16434245 doi: 10.1016/j.bbapap.2005.12.005
Goormaghtigh E, Cabiaux V, Ruysschaert J-M. Determination of Soluble and membrane protein structure by Fourier Transform Infrared Spectroscopy. In: Hilderson HJ, Ralston GB, editors. Physicochemical methods in the study of Biomembranes. Boston, MA: Springer US; 1994. pp. 405–50.
doi: 10.1007/978-1-4615-1863-1_10
Dazzi A, Prater CB. AFM-IR: technology and applications in Nanoscale Infrared Spectroscopy and Chemical Imaging. Chem Rev. 2017;117(7):5146–73.
pubmed: 27958707 doi: 10.1021/acs.chemrev.6b00448
Zhang D, Li C, Zhang C, Slipchenko MN, Eakins G, Cheng JX. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution. Sci Adv. 2016;2(9):e1600521.
pubmed: 27704043 pmcid: 5040478 doi: 10.1126/sciadv.1600521
AC VDDS, Hondl N, Ramos-Garcia V, Kuligowski J, Lendl B, Ramer G. AFM-IR for Nanoscale Chemical characterization in Life sciences: recent developments and future directions. ACS Meas Sci Au. 2023;3(5):301–14.
doi: 10.1021/acsmeasuresciau.3c00010
Xitian H, Li Z, Xu W, Yan P. Review on near-field detection technology in the biomedical field. Adv Photonics Nexus. 2023;2(4):044002.
Dazzi A, Prazeres R, Glotin F, Ortega JM. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt Lett. 2005;30(18):2388–90.
pubmed: 16196328 doi: 10.1364/OL.30.002388
Schwartz JJ, Pavlidis G, Centrone A. Understanding Cantilever transduction efficiency and spatial resolution in Nanoscale Infrared Microscopy. Anal Chem. 2022;94(38):13126–35.
pubmed: 36099442 doi: 10.1021/acs.analchem.2c02612
Ramer G, Aksyuk VA, Centrone A. Quantitative Chemical Analysis at the Nanoscale using the Photothermal Induced Resonance technique. Anal Chem. 2017;89(24):13524–31.
pubmed: 29165992 pmcid: 5841475 doi: 10.1021/acs.analchem.7b03878
Quaroni L. Understanding and Controlling spatial resolution, sensitivity, and Surface Selectivity in Resonant-Mode Photothermal-Induced Resonance Spectroscopy. Anal Chem. 2020;92(5):3544–54.
pubmed: 32023046 doi: 10.1021/acs.analchem.9b03468
Waeytens J, De Meutter J, Goormaghtigh E, Dazzi A, Raussens V. Determination of secondary structure of proteins by Nanoinfrared Spectroscopy. Anal Chem. 2023;95(2):621–7.
pubmed: 36598929 pmcid: 9851152 doi: 10.1021/acs.analchem.2c01431
Waeytens J, Mathurin J, Deniset-Besseau A, Arluison V, Bousset L, Rezaei H, et al. Probing amyloid fibril secondary structures by infrared nanospectroscopy: experimental and theoretical considerations. Analyst. 2021;146(1):132–45.
pubmed: 33107501 doi: 10.1039/D0AN01545H
Lu F, Belkin MA. Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers. Opt Express. 2011;19(21):19942–7.
pubmed: 21997003 doi: 10.1364/OE.19.019942
Wieland K, Ramer G, Weiss VU, Allmaier G, Lendl B, Centrone A. Nanoscale chemical imaging of individual chemotherapeutic cytarabine-loaded liposomal nanocarriers. Nano Res. 2019;12(1):197–203.
doi: 10.1007/s12274-018-2202-x
Wang L, Wang H, Wagner M, Yan Y, Jakob DS, Xu XG. Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy. Sci Adv. 2017;3(6):e1700255.
pubmed: 28691096 pmcid: 5482550 doi: 10.1126/sciadv.1700255
Kenkel S, Mittal S, Bhargava R. Closed-loop atomic force microscopy-infrared spectroscopic imaging for nanoscale molecular characterization. Nat Commun. 2020;11(1):3225.
pubmed: 32591515 pmcid: 7320136 doi: 10.1038/s41467-020-17043-5
Mathurin J, Deniset-Besseau A, Dazzi A. Advanced Infrared Nanospectroscopy using Photothermal Induced Resonance technique, AFMIR: New Approach using Tapping Mode. Acta Phys Pol A. 2020;137(1):29–32.
doi: 10.12693/APhysPolA.137.29
Yilmaz U, Sam S, Lendl B, Ramer G. Bottom-illuminated Photothermal Nanoscale Chemical Imaging with a Flat Silicon ATR in Air and Liquid. Anal Chem. 2024;96(11):4410–8.
pubmed: 38445554 pmcid: 10955511 doi: 10.1021/acs.analchem.3c04348
Dazzi A, Prazeres R, Glotin F, Ortega JM. Subwavelength infrared spectromicroscopy using an AFM as a local absorption sensor. Infrared Phys Technol. 2006;49(1–2):113–21.
doi: 10.1016/j.infrared.2006.01.009
Dazzi A, Prazeres R, Glotin F, Ortega JM, Al-Sawaftah M, de Frutos M. Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method. Ultramicroscopy. 2008;108(7):635–41.
pubmed: 18037564 doi: 10.1016/j.ultramic.2007.10.008
Mayet C, Dazzi A, Prazeres R, Ortega JM, Jaillard D. In situ identification and imaging of bacterial polymer nanogranules by infrared nanospectroscopy. Analyst. 2010;135(10):2540–5.
pubmed: 20820491 doi: 10.1039/c0an00290a
Baldassarre L, Giliberti V, Rosa A, Ortolani M, Bonamore A, Baiocco P, et al. Mapping the amide I absorption in single bacteria and mammalian cells with resonant infrared nanospectroscopy. Nanotechnology. 2016;27(7):075101.
pubmed: 26778320 doi: 10.1088/0957-4484/27/7/075101
Deniset-Besseau A, Prater CB, Virolle MJ, Dazzi A. Monitoring TriAcylGlycerols Accumulation by Atomic Force Microscopy Based Infrared Spectroscopy in Streptomyces Species for Biodiesel Applications. J Phys Chem Lett. 2014;5(4):654–8.
pubmed: 26270832 doi: 10.1021/jz402393a
Rebois R, Onidas D, Marcott C, Noda I, Dazzi A. Chloroform induces outstanding crystallization of poly(hydroxybutyrate) (PHB) vesicles within bacteria. Anal Bioanal Chem. 2017;409(9):2353–61.
pubmed: 28175936 doi: 10.1007/s00216-017-0181-5
Kochan K, Nethercott C, Perez Guaita D, Jiang JH, Peleg AY, Wood BR, et al. Detection of Antimicrobial Resistance-related changes in biochemical composition of Staphylococcus aureus by means of Atomic Force Microscopy-Infrared Spectroscopy. Anal Chem. 2019;91(24):15397–403.
pubmed: 31755705 doi: 10.1021/acs.analchem.9b01671
Otzen DE, Dueholm MS, Najarzadeh Z, Knowles TPJ, Ruggeri FS. In situ sub-cellular identification of functional amyloids in Bacteria and Archaea by Infrared Nanospectroscopy. Small Methods. 2021;5(6):e2001002.
pubmed: 34927901 doi: 10.1002/smtd.202001002
Kochan K, Peleg AY, Heraud P, Wood BR. Atomic Force Microscopy Combined with Infrared Spectroscopy as a Tool to Probe single bacterium Chemistry. J Vis Exp. 2020(163).
Langenberg T, Gallardo R, van der Kant R, Louros N, Michiels E, Duran-Romaña R et al. Thermodynamic and evolutionary coupling between the native and amyloid state of globular proteins. Cell Reports2020.
Dos Santos ACVD, Heydenreich R, Derntl C, Mach-Aigner AR, Mach RL, Ramer G, et al. Nanoscale Infrared Spectroscopy and Chemometrics Enable detection of intracellular protein distribution. Anal Chem. 2020;92(24):15719–25.
pubmed: 33259186 doi: 10.1021/acs.analchem.0c02228
Pachitariu M, Stringer C. Cellpose 2.0: how to train your own model. Nat Methods. 2022;19(12):1634–41.
pubmed: 36344832 pmcid: 9718665 doi: 10.1038/s41592-022-01663-4
Zack GW, Rogers WE, Latt SA. Automatic measurement of sister chromatid exchange frequency. J Histochem Cytochem. 1977;25(7):741–53.
pubmed: 70454 doi: 10.1177/25.7.70454
Raussens V, Waeytens J. Characterization of bacterial amyloids by Nano-infrared spectroscopy. In: Arluison V, Wien F, Marcoleta A, editors. Bacterial amyloids: methods and protocols. New York, NY: Springer US; 2022. pp. 117–29.
doi: 10.1007/978-1-0716-2529-3_9
Kenkel S, Gryka M, Chen L, Confer MP, Rao A, Robinson S, et al. Chemical imaging of cellular ultrastructure by null-deflection infrared spectroscopic measurements. Proc Natl Acad Sci U S A. 2022;119(47):e2210516119.
pubmed: 36375054 pmcid: 9704695 doi: 10.1073/pnas.2210516119
Lu F, Jin MZ, Belkin MA. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat Photonics. 2014;8(4):307–12.
doi: 10.1038/nphoton.2013.373
Schwartz JJ, Jakob DS, Centrone A. A guide to nanoscale IR spectroscopy: resonance enhanced transduction in contact and tapping mode AFM-IR. Chem Soc Rev. 2022;51(13):5248–67.
pubmed: 35616225 doi: 10.1039/D2CS00095D
Shen Y, Chen A, Wang W, Shen Y, Ruggeri FS, Aime S, et al. The liquid-to-solid transition of FUS is promoted by the condensate surface. Proc Natl Acad Sci U S A. 2023;120(33):e2301366120.
pubmed: 37549257 pmcid: 10438845 doi: 10.1073/pnas.2301366120
Ramer G, dos Santos ACV, Zhang Y, Yilmaz U, Lendl B, editors. Image processing as basis for chemometrics in photothermal atomic force microscopy infrared imaging. Advanced Chemical Microscopy for Life Science and Translational Medicine 2023; 2023: SPIE.
McInnes L, Healy J, Saul N, Großberger L. UMAP: Uniform Manifold approximation and projection. J Open Source Softw2018. p. 861.
Simone D, Andrzej S, Angela S, Marco R, Daniele P. Atomic force microscopy as a tool for mechanical characterization at the nanometer scale. Nanomaterials Energy. 2023;12(2):71–80.
doi: 10.1680/jnaen.23.00016
Mayet C, Dazzi A, Prazeres R, Allot F, Glotin F, Ortega JM. Sub-100 nm IR spectromicroscopy of living cells. Opt Lett. 2008;33(14):1611–3.
pubmed: 18628814 doi: 10.1364/OL.33.001611
Ramer G, Ruggeri FS, Levin A, Knowles TPJ, Centrone A. Determination of Polypeptide Conformation with Nanoscale Resolution in Water. ACS Nano. 2018;12(7):6612–9.
pubmed: 29932670 doi: 10.1021/acsnano.8b01425
Kennedy E, Al-Majmaie R, Al-Rubeai M, Zerulla D, Rice JH. Nanoscale infrared absorption imaging permits non-destructive intracellular photosensitizer localization for subcellular uptake analysis. RSC Adv. 2013;3(33):13789–95.
doi: 10.1039/c3ra42185f
Paluszkiewicz C, Piergies N, Chaniecki P, Rękas M, Miszczyk J, Kwiatek WM. Differentiation of protein secondary structure in clear and opaque human lenses: AFM – IR studies. J Pharm Biomed Anal. 2017;139:125–32.
pubmed: 28279927 doi: 10.1016/j.jpba.2017.03.001
Qamar S, Wang G, Randle SJ, Ruggeri FS, Varela JA, Lin JQ, et al. FUS phase separation is modulated by a molecular chaperone and methylation of Arginine Cation-Pi interactions. Cell. 2018;173(3):720–34. e15.
pubmed: 29677515 pmcid: 5927716 doi: 10.1016/j.cell.2018.03.056
Zhaliazka K, Kurouski D. Nanoscale characterization of parallel and antiparallel beta-sheet amyloid Beta 1–42 aggregates. ACS Chem Neurosci. 2022;13(19):2813–20.
pubmed: 36122250 doi: 10.1021/acschemneuro.2c00180
Ruggeri FS, Mannini B, Schmid R, Vendruscolo M, Knowles TPJ. Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy. Nature Communications: Springer US; 2020. pp. 1–9.
Pancani E, Mathurin J, Bilent S, Bernet-Camard M-F, Dazzi A, Deniset-Besseau A, et al. High-resolution label-free detection of Biocompatible Polymeric nanoparticles in cells. Part Part Syst Charact. 2018;35(3):1700457.
doi: 10.1002/ppsc.201700457
Perez-Guaita D, Kochan K, Batty M, Doerig C, Garcia-Bustos J, Espinoza S, et al. Multispectral Atomic Force Microscopy-Infrared Nano-Imaging of Malaria Infected Red Blood cells. Anal Chem. 2018;90(5):3140–8.
pubmed: 29327915 doi: 10.1021/acs.analchem.7b04318
Rizevsky S, Kurouski D. Nanoscale Structural Organization of Insulin Fibril Polymorphs revealed by Atomic Force Microscopy-Infrared spectroscopy (AFM-IR). ChemBioChem. 2020;21(4):481–5.
pubmed: 31299124 doi: 10.1002/cbic.201900394
Roman M, Wrobel TP, Paluszkiewicz C, Kwiatek WM. Comparison between high definition FT-IR, Raman and AFM-IR for subcellular chemical imaging of cholesteryl esters in prostate cancer cells. J Biophotonics. 2020;13(5):e201960094.
pubmed: 31999078 doi: 10.1002/jbio.201960094

Auteurs

Wouter Duverger (W)

Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, Leuven, 3000, Belgium.
Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.

Grigoria Tsaka (G)

Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, Leuven, 3000, Belgium.
Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
Leuven Brain Institute, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.

Ladan Khodaparast (L)

Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, Leuven, 3000, Belgium.
Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.

Laleh Khodaparast (L)

Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, Leuven, 3000, Belgium.
Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.

Nikolaos Louros (N)

Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.

Frederic Rousseau (F)

Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, Leuven, 3000, Belgium. frederic.rousseau@kuleuven.be.
Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven, 3000, Belgium. frederic.rousseau@kuleuven.be.

Joost Schymkowitz (J)

Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, Leuven, 3000, Belgium. joost.schymkowitz@kuleuven.be.
Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven, 3000, Belgium. joost.schymkowitz@kuleuven.be.

Articles similaires

Female Biofilms Animals Lactobacillus Mice
Host Specificity Bacteriophages Genomics Algorithms Escherichia coli
Biofilms Horses Animals Escherichia coli Mesenchymal Stem Cells
Animals Growth Plate Isocitrate Dehydrogenase Mice Single-Cell Analysis

Classifications MeSH