Fungal melanin suppresses airway epithelial chemokine secretion through blockade of calcium fluxing.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
10 Jul 2024
Historique:
received: 02 04 2023
accepted: 28 06 2024
medline: 11 7 2024
pubmed: 11 7 2024
entrez: 10 7 2024
Statut: epublish

Résumé

Respiratory infections caused by the human fungal pathogen Aspergillus fumigatus are a major cause of mortality for immunocompromised patients. Exposure to these pathogens occurs through inhalation, although the role of the respiratory epithelium in disease pathogenesis has not been fully defined. Employing a primary human airway epithelial model, we demonstrate that fungal melanins potently block the post-translational secretion of the chemokines CXCL1 and CXCL8 independent of transcription or the requirement of melanin to be phagocytosed, leading to a significant reduction in neutrophil recruitment to the apical airway both in vitro and in vivo. Aspergillus-derived melanin, a major constituent of the fungal cell wall, dampened airway epithelial chemokine secretion in response to fungi, bacteria, and exogenous cytokines. Furthermore, melanin muted pathogen-mediated calcium fluxing and hindered actin filamentation. Taken together, our results reveal a critical role for melanin interaction with airway epithelium in shaping the host response to fungal and bacterial pathogens.

Identifiants

pubmed: 38987270
doi: 10.1038/s41467-024-50100-x
pii: 10.1038/s41467-024-50100-x
doi:

Substances chimiques

Melanins 0
Interleukin-8 0
Calcium SY7Q814VUP
Chemokine CXCL1 0
CXCL8 protein, human 0
CXCL1 protein, human 0
Chemokines 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5817

Subventions

Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01AI136529
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : K08AI14755
Organisme : U.S. Department of Health & Human Services | NIH | Center for Information Technology (Center for Information Technology, National Institutes of Health)
ID : R01AI150181
Organisme : Wellcome Trust
ID : 102705
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 217163
Pays : United Kingdom

Informations de copyright

© 2024. The Author(s).

Références

Thompson, G. R. 3rd & Young, J. H. Aspergillus infections. N. Engl. J. Med 385, 1496–1509 (2021).
pubmed: 34644473 doi: 10.1056/NEJMra2027424
Huang, L. et al. Invasive pulmonary aspergillosis in patients with influenza infection: a retrospective study and review of the literature. Clin. Respir. J. 13, 202–211 (2019).
pubmed: 30661296 doi: 10.1111/crj.12995
Rawson, T. M. et al. Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clin. Infect. Dis. 71, 2459–2468 (2020).
pubmed: 32358954
Rayens, E., Norris, K. A. & Cordero, J. F. Mortality trends in risk conditions and invasive mycotic disease in the United States, 1999-2018. Clin. Infect. Dis. 74, 309–318 (2021).
pmcid: 8800183 doi: 10.1093/cid/ciab336
Takazono, T. & Sheppard, D. C. Aspergillus in chronic lung disease: modeling what goes on in the airways. Med Mycol. 55, 39–47 (2017).
pubmed: 27838644 doi: 10.1093/mmy/myw117
Bueid, A. et al. Azole antifungal resistance in Aspergillus fumigatus: 2008 and 2009. J. Antimicrob. Chemother. 65, 2116–2118 (2010).
pubmed: 20729241 doi: 10.1093/jac/dkq279
Iversen, M. et al. Aspergillus infection in lung transplant patients: incidence and prognosis. Eur. J. Clin. Microbiol Infect. Dis. 26, 879–886 (2007).
pubmed: 17874329 doi: 10.1007/s10096-007-0376-3
Lin, S. J., Schranz, J. & Teutsch, S. M. Aspergillosis case-fatality rate: systematic review of the literature. Clin. Infect. Dis. 32, 358–366 (2001).
pubmed: 11170942 doi: 10.1086/318483
Ward, R. A. & Vyas, J. M. The first line of defense: effector pathways of anti-fungal innate immunity. Curr. Opin. Microbiol 58, 160–165 (2020).
pubmed: 33217703 pmcid: 7746574 doi: 10.1016/j.mib.2020.10.003
Latgé, J. P., Beauvais, A. & Chamilos, G. The Cell Wall of the Human Fungal Pathogen Aspergillus fumigatus: Biosynthesis, Organization, Immune Response, and Virulence. Annu Rev. Microbiol 71, 99–116 (2017).
pubmed: 28701066 doi: 10.1146/annurev-micro-030117-020406
Cho, S.-H., Seo, S.-C., Schmechel, D., Grinshpun, S. A. & Reponen, T. Aerodynamic characteristics and respiratory deposition of fungal fragments. Atmos. Environ. 39, 5454–5465 (2005).
doi: 10.1016/j.atmosenv.2005.05.042
Valsecchi, I. et al. The puzzling construction of the conidial outer layer of Aspergillus fumigatus. Cell Microbiol 21, e12994 (2019).
pubmed: 30552790 doi: 10.1111/cmi.12994
Wang, Y., Aisen, P. & Casadevall, A. Cryptococcus neoformans melanin and virulence: mechanism of action. Infect. Immun. 63, 3131–3136 (1995).
pubmed: 7622240 pmcid: 173427 doi: 10.1128/iai.63.8.3131-3136.1995
Jahn, B. et al. Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence. Infect. Immun. 65, 5110–5117 (1997).
pubmed: 9393803 pmcid: 175736 doi: 10.1128/iai.65.12.5110-5117.1997
Langfelder, K. et al. Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. Med Microbiol Immunol. 187, 79–89 (1998).
pubmed: 9832321 doi: 10.1007/s004300050077
Tsai, H. F., Chang, Y. C., Washburn, R. G., Wheeler, M. H. & Kwon-Chung, K. J. The developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence. J. Bacteriol. 180, 3031–3038 (1998).
pubmed: 9620950 pmcid: 107801 doi: 10.1128/JB.180.12.3031-3038.1998
Sugareva, V. et al. Characterisation of the laccase-encoding gene abr2 of the dihydroxynaphthalene-like melanin gene cluster of Aspergillus fumigatus. Arch. Microbiol 186, 345–355 (2006).
pubmed: 16988817 doi: 10.1007/s00203-006-0144-2
Chai, L. Y. et al. Aspergillus fumigatus conidial melanin modulates host cytokine response. Immunobiology 215, 915–920 (2010).
pubmed: 19939494 doi: 10.1016/j.imbio.2009.10.002
Graf, K. T., Liu, H., Filler, S. G. & Bruno, V. M. Depletion of extracellular chemokines by Aspergillus melanin. mBio 14, e0019423 (2023).
pubmed: 37067432 doi: 10.1128/mbio.00194-23
Akoumianaki, T. et al. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microbe 19, 79–90 (2016).
pubmed: 26749442 doi: 10.1016/j.chom.2015.12.002
Goncalves, S. M. et al. Phagosomal removal of fungal melanin reprograms macrophage metabolism to promote antifungal immunity. Nat. Commun. 11, 2282 (2020).
pubmed: 32385235 pmcid: 7210971 doi: 10.1038/s41467-020-16120-z
Kradin, R. L. & Mark, E. J. The pathology of pulmonary disorders due to Aspergillus spp. Arch. Pathol. Lab Med 132, 606–614 (2008).
pubmed: 18384212 doi: 10.5858/2008-132-606-TPOPDD
Latge, J. P. The pathobiology of Aspergillus fumigatus. Trends Microbiol 9, 382–389 (2001).
pubmed: 11514221 doi: 10.1016/S0966-842X(01)02104-7
Lee, J. Y. et al. Aspergillus tracheobronchitis and influenza a co-infection in a patient with AIDS and neutropenia. Infect. Chemother. 46, 209–215 (2014).
pubmed: 25298912 pmcid: 4189137 doi: 10.3947/ic.2014.46.3.209
Nyga, R. et al. Invasive tracheobronchial aspergillosis in critically ill patients with severe influenza. a clinical trial. Am. J. Respir. Crit. Care Med 202, 708–716 (2020).
pubmed: 32407157 doi: 10.1164/rccm.201910-1931OC
Montoro, D. T. et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560, 319–324 (2018).
pubmed: 30069044 pmcid: 6295155 doi: 10.1038/s41586-018-0393-7
Yonker, L. M. et al. Neutrophil-derived cytosolic PLA2α contributes to bacterial-induced neutrophil transepithelial migration. J. Immunol. 199, 2873–2884 (2017).
pubmed: 28887431 doi: 10.4049/jimmunol.1700539
Feldman, M. B. et al. Aspergillus fumigatus cell wall promotes apical airway epithelial recruitment of human neutrophils. Infect Immun. 88, e00813-19 (2020).
Feldman, M. B., Wood, M., Lapey, A. & Mou, H. SMAD signaling restricts mucous cell differentiation in human airway epithelium. Am. J. Respir. Cell Mol. Biol. 61, 322–331 (2019).
pubmed: 30848657 pmcid: 6839926 doi: 10.1165/rcmb.2018-0326OC
Yonker, L. M. et al. Neutrophil dysfunction in cystic fibrosis. J. Cyst. Fibros. 20, 1062–1071 (2021).
pubmed: 33589340 pmcid: 8568301 doi: 10.1016/j.jcf.2021.01.012
Stappers, M. H. T. et al. Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature 555, 382–386 (2018).
pubmed: 29489751 pmcid: 5857201 doi: 10.1038/nature25974
Lopez Robles, M. D. et al. Cell-surface C-type lectin-like receptor CLEC-1 dampens dendritic cell activation and downstream Th17 responses. Blood Adv. 1, 557–568 (2017).
pubmed: 29296975 pmcid: 5728597 doi: 10.1182/bloodadvances.2016002360
Colonna, M., Samaridis, J. & Angman, L. Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur. J. Immunol. 30, 697–704 (2000).
pubmed: 10671229 doi: 10.1002/1521-4141(200002)30:2<697::AID-IMMU697>3.0.CO;2-M
Wang, Y., Aisen, P. & Casadevall, A. Melanin, melanin “ghosts,” and melanin composition in Cryptococcus neoformans. Infect. Immun. 64, 2420–2424 (1996).
pubmed: 8698461 pmcid: 174092 doi: 10.1128/iai.64.7.2420-2424.1996
Rosas, A. L. et al. Synthesis of polymerized melanin by Cryptococcus neoformans in infected rodents. Infect. Immun. 68, 2845–2853 (2000).
pubmed: 10768981 pmcid: 97496 doi: 10.1128/IAI.68.5.2845-2853.2000
Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).
pubmed: 13428781 doi: 10.1016/S0021-9258(18)64849-5
Chamilos, G. et al. Melanin targets LC3-associated phagocytosis (LAP): A novel pathogenetic mechanism in fungal disease. Autophagy 12, 888–889 (2016).
pubmed: 27028978 pmcid: 4854543 doi: 10.1080/15548627.2016.1157242
Camacho, E. et al. N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture. Microbiol. (Read.) 163, 1540–1556 (2017).
doi: 10.1099/mic.0.000552
Pazos, M. A. et al. Pseudomonas aeruginosa ExoU augments neutrophil transepithelial migration. PLoS Pathog. 13, e1006548 (2017).
pubmed: 28771621 pmcid: 5557605 doi: 10.1371/journal.ppat.1006548
Yonker, L. M. et al. Development of a primary human co-culture model of inflamed airway mucosa. Sci. Rep. 7, 8182 (2017).
pubmed: 28811631 pmcid: 5557980 doi: 10.1038/s41598-017-08567-w
Yonker, L. M. et al. Neutrophil-derived cytosolic pla2alpha contributes to bacterial-induced neutrophil transepithelial migration. J. Immunol. 199, 2873–2884 (2017).
pubmed: 28887431 doi: 10.4049/jimmunol.1700539
Das, S. T. et al. Monomeric and dimeric CXCL8 are both essential for in vivo neutrophil recruitment. PLoS One 5, e11754 (2010).
pubmed: 20668677 pmcid: 2909905 doi: 10.1371/journal.pone.0011754
Long, M. B. & Chalmers, J. D. Treating Neutrophilic Inflammation in Airways Diseases. Arch. Bronconeumol. 58, 463–465 (2022).
pubmed: 34866748 doi: 10.1016/j.arbres.2021.11.003
Tamang, D. L. et al. Hepoxilin A(3) facilitates neutrophilic breach of lipoxygenase-expressing airway epithelial barriers. J. Immunol. 189, 4960–4969 (2012).
pubmed: 23045615 doi: 10.4049/jimmunol.1201922
Pazos, M. A. et al. Distinct cellular sources of hepoxilin A3 and leukotriene B4 are used to coordinate bacterial-induced neutrophil transepithelial migration. J. Immunol. 194, 1304–1315 (2015).
pubmed: 25548217 doi: 10.4049/jimmunol.1402489
Mrsny, R. J. et al. Identification of hepoxilin A3 in inflammatory events: a required role in neutrophil migration across intestinal epithelia. Proc. Natl Acad. Sci. USA 101, 7421–7426 (2004).
pubmed: 15123795 pmcid: 409934 doi: 10.1073/pnas.0400832101
Kubala, S. A., Patil, S. U., Shreffler, W. G. & Hurley, B. P. Pathogen induced chemo-attractant hepoxilin A3 drives neutrophils, but not eosinophils across epithelial barriers. Prostaglandins Other Lipid Mediat 108, 1–8 (2014).
pubmed: 24315875 doi: 10.1016/j.prostaglandins.2013.11.001
Riley, P. A. Melanin. Int J. Biochem Cell Biol. 29, 1235–1239 (1997).
pubmed: 9451820 doi: 10.1016/S1357-2725(97)00013-7
White, L. P. Melanin: a naturally occurring cation exchange material. Nature 182, 1427–1428 (1958).
pubmed: 13600352 doi: 10.1038/1821427a0
Wheeler, M. H. & Bell, A. A. Melanins and their importance in pathogenic fungi. Curr. Top. Med Mycol. 2, 338–387 (1988).
pubmed: 3288360 doi: 10.1007/978-1-4612-3730-3_10
Rhodes, J. C., Polacheck, I. & Kwon-Chung, K. J. Phenoloxidase activity and virulence in isogenic strains of Cryptococcus neoformans. Infect. Immun. 36, 1175–1184 (1982).
pubmed: 6807845 pmcid: 551454 doi: 10.1128/iai.36.3.1175-1184.1982
Kwon-Chung, K. J., Tom, W. K. & Costa, J. L. Utilization of indole compounds by Cryptococcus neoformans to produce a melanin-like pigment. J. Clin. Microbiol 18, 1419–1421 (1983).
pubmed: 6418759 pmcid: 272919 doi: 10.1128/jcm.18.6.1419-1421.1983
Salas, S. D., Bennett, J. E., Kwon-Chung, K. J., Perfect, J. R. & Williamson, P. R. Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans. J. Exp. Med 184, 377–386 (1996).
pubmed: 8760791 doi: 10.1084/jem.184.2.377
Tsai, H. F., Washburn, R. G., Chang, Y. C. & Kwon-Chung, K. J. Aspergillus fumigatus arp1 modulates conidial pigmentation and complement deposition. Mol. Microbiol 26, 175–183 (1997).
pubmed: 9383199 doi: 10.1046/j.1365-2958.1997.5681921.x
Eisenman, H. C. et al. Microstructure of cell wall-associated melanin in the human pathogenic fungus Cryptococcus neoformans. Biochemistry 44, 3683–3693 (2005).
pubmed: 15751945 doi: 10.1021/bi047731m
Eisenman, H. C. et al. Cryptococcus neoformans laccase catalyses melanin synthesis from both D- and L-DOPA. Microbiol. (Read.) 153, 3954–3962 (2007).
doi: 10.1099/mic.0.2007/011049-0
Tam, J. M., Mansour, M. K., Khan, N. S., Yoder, N. C. & Vyas, J. M. Use of fungal derived polysaccharide-conjugated particles to probe Dectin-1 responses in innate immunity. Integr. Biol. (Camb.) 4, 220–227 (2012).
pubmed: 22200052 doi: 10.1039/C2IB00089J
Reedy, J. L. et al. The C-Type Lectin Receptor Dectin-2 Is a Receptor for Aspergillus fumigatus Galactomannan. mBio 14, e0318422 (2023).
pubmed: 36598192 doi: 10.1128/mbio.03184-22
Chow, A. W. et al. Polarized secretion of interleukin (IL)-6 and IL-8 by human airway epithelia 16HBE14o- cells in response to cationic polypeptide challenge. PLoS One 5, e12091 (2010).
pubmed: 20711426 pmcid: 2920803 doi: 10.1371/journal.pone.0012091
Pillai, D. K. et al. Directional secretomes reflect polarity-specific functions in an in vitro model of human bronchial epithelium. Am. J. Respir. Cell Mol. Biol. 50, 292–300 (2014).
pubmed: 24010916 pmcid: 3930950 doi: 10.1165/rcmb.2013-0188OC
Skronska-Wasek, W., Durlanik, S., Garnett, J. P. & Pflanz, S. Polarized cytokine release from airway epithelium differentially influences macrophage phenotype. Mol. Immunol. 132, 142–149 (2021).
pubmed: 33588245 doi: 10.1016/j.molimm.2021.01.029
Thywißen, A. et al. Conidial dihydroxynaphthalene melanin of the human pathogenic fungus Aspergillus fumigatus interferes with the host endocytosis pathway. Front Microbiol 2, 96 (2011).
pubmed: 21747802 pmcid: 3128974 doi: 10.3389/fmicb.2011.00096
Amin, S., Thywissen, A., Heinekamp, T., Saluz, H. P. & Brakhage, A. A. Melanin dependent survival of Aspergillus fumigatus conidia in lung epithelial cells. Int J. Med Microbiol 304, 626–636 (2014).
pubmed: 24836942 doi: 10.1016/j.ijmm.2014.04.009
van den Berg, A. et al. Cytoskeletal architecture differentially controls post-transcriptional processing of IL-6 and IL-8 mRNA in airway epithelial-like cells. Exp. Cell Res 312, 1496–1506 (2006).
pubmed: 16499908 doi: 10.1016/j.yexcr.2006.01.010
Cambier, S., Gouwy, M. & Proost, P. The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell. Mol. Immunol. 20, 217–251 (2023).
pubmed: 36725964 pmcid: 9890491 doi: 10.1038/s41423-023-00974-6
Hurley, B. P., Siccardi, D., Mrsny, R. J. & McCormick, B. A. Polymorphonuclear cell transmigration induced by Pseudomonas aeruginosa requires the eicosanoid hepoxilin A3. J. Immunol. 173, 5712–5720 (2004).
pubmed: 15494523 doi: 10.4049/jimmunol.173.9.5712
Kusek, M. E., Pazos, M. A., Pirzai, W. & Hurley, B. P. In vitro coculture assay to assess pathogen induced neutrophil trans-epithelial migration. J Vis Exp, e50823, https://doi.org/10.3791/50823 (2014).
Crossen, A. J. et al. Human Airway Epithelium responses to invasive fungal infections: a critical partner in innate immunity. J Fungi (Basel) 9, 40 (2022).
Chamilos, G. & Carvalho, A. Aspergillus fumigatus DHN-Melanin. Curr. Top. Microbiol Immunol. 425, 17–28 (2020).
pubmed: 32385534
Kyrmizi, I. et al. Calcium sequestration by fungal melanin inhibits calcium-calmodulin signalling to prevent LC3-associated phagocytosis. Nat. Microbiol 3, 791–803 (2018).
pubmed: 29849062 doi: 10.1038/s41564-018-0167-x
Hiramatsu, Y., Nishida, T., Nugraha, D. K., Sugihara, F. & Horiguchi, Y. Melanin produced by Bordetella parapertussis confers a survival advantage to the bacterium during host infection. mSphere 6, e0081921 (2021).
pubmed: 34643424 doi: 10.1128/mSphere.00819-21
Hann, J., Bueb, J. L., Tolle, F. & Bréchard, S. Calcium signaling and regulation of neutrophil functions: Still a long way to go. J. Leukoc. Biol. 107, 285–297 (2020).
pubmed: 31841231 doi: 10.1002/JLB.3RU0719-241R
Kong, F., You, H., Zheng, K., Tang, R. & Zheng, C. The crosstalk between pattern-recognition receptor signaling and calcium signaling. Int J. Biol. Macromol. 192, 745–756 (2021).
pubmed: 34634335 doi: 10.1016/j.ijbiomac.2021.10.014
Kuhns, D. B., Young, H. A., Gallin, E. K. & Gallin, J. I. Ca2 + -dependent production and release of IL-8 in human neutrophils. J. Immunol. 161, 4332–4339 (1998).
pubmed: 9780210 doi: 10.4049/jimmunol.161.8.4332
Waters, V. et al. The effect of cyclosporin A on airway cell proinflammatory signaling and pneumonia. Am. J. Respir. Cell Mol. Biol. 33, 138–144 (2005).
pubmed: 15879161 pmcid: 2715308 doi: 10.1165/rcmb.2005-0005OC
Levardon, H., Yonker, L. M., Hurley, B. P. & Mou, H. Expansion of airway basal cells and generation of polarized epithelium. Bio Protoc 8, e2877 (2018).
Mou, H. et al. Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells. Cell Stem Cell 19, 217–231 (2016).
pubmed: 27320041 pmcid: 4975684 doi: 10.1016/j.stem.2016.05.012
Mou, H. et al. Airway basal stem cells generate distinct subpopulations of PNECs. Cell Rep. 35, 109011 (2021).
pubmed: 33882306 pmcid: 8140387 doi: 10.1016/j.celrep.2021.109011
Ries, L. N., Beattie, S. R., Espeso, E. A., Cramer, R. A. & Goldman, G. H. Diverse regulation of the CreA carbon catabolite repressor in Aspergillus nidulans. Genetics 203, 335–352 (2016).
pubmed: 27017621 pmcid: 4858783 doi: 10.1534/genetics.116.187872
Rossner, M. & Yamada, K. M. What’s in a picture? the temptation of image manipulation. J. Cell Biol. 166, 11–15 (2004).
pubmed: 15240566 pmcid: 2172141 doi: 10.1083/jcb.200406019

Auteurs

Jennifer L Reedy (JL)

Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
Harvard Medical School, Boston, MA, USA.

Kirstine Nolling Jensen (KN)

Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
Harvard Medical School, Boston, MA, USA.

Arianne J Crossen (AJ)

Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.

Kyle J Basham (KJ)

Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.

Rebecca A Ward (RA)

Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.

Christopher M Reardon (CM)

Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.

Hannah Brown Harding (H)

Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
Harvard Medical School, Boston, MA, USA.

Olivia W Hepworth (OW)

Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
Harvard Medical School, Boston, MA, USA.

Patricia Simaku (P)

Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.

Geneva N Kwaku (GN)

Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.

Kazuya Tone (K)

Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom.
Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.

Janet A Willment (JA)

Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom.
MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom.

Delyth M Reid (DM)

Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom.

Mark H T Stappers (MHT)

Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom.
MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom.

Gordon D Brown (GD)

Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom.
MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom.

Jayaraj Rajagopal (J)

Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
Harvard Stem Cell Institute, Cambridge, MA, USA.
Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.

Jatin M Vyas (JM)

Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA. jvyas@mgh.harvard.edu.
Harvard Medical School, Boston, MA, USA. jvyas@mgh.harvard.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH