Bill shape variation in selected species in birds of prey.


Journal

Anatomia, histologia, embryologia
ISSN: 1439-0264
Titre abrégé: Anat Histol Embryol
Pays: Germany
ID NLM: 7704218

Informations de publication

Date de publication:
Jul 2024
Historique:
revised: 20 06 2024
received: 16 05 2024
accepted: 24 06 2024
medline: 5 7 2024
pubmed: 5 7 2024
entrez: 5 7 2024
Statut: ppublish

Résumé

At the top of many ecosystems, raptors, also known as birds of prey, hold major influence. They shape their surroundings through their powerful hunting skills and complex interactions with their environment. This study investigates the beak morphology of four prominent raptor species, Golden eagle (Aquila chrysaetos), Common buzzard (Buteo buteo), Peregrine falcon (Falco peregrinus) and Common kestrel (Falco tinnunculus), found in Türkiye. By employing geometric morphometric methods, we investigate shape variations in the beaks of these species to unravel the adaptive significance of their cranial structures. This analysis reveals distinct beak morphologies among the studied raptors, reflecting adaptations to their feeding habits, hunting techniques and ecological niches. The results from Principal component analysis and Canonical variate analysis demonstrate significant differences in beak morphology between the Falconiformes and Accipitriformes clades, as well as among all three groups. The overall mean beak shapes of Golden Eagles are quite similar to Common Buzzards, with both species having longer beaks. In contrast, Falcons exhibit a distinctly different beak morphology, characterized by wider and shorter beaks. Changes in beak shape can lead to changes depending on the skull. It is thought that skull shape variations among predator families may have an impact on beak shape. These findings highlight the importance of integrating morphometric analyses with ecological insights to enhance our understanding of the evolutionary processes shaping raptor beak morphology.

Identifiants

pubmed: 38965917
doi: 10.1111/ahe.13085
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e13085

Informations de copyright

© 2024 Wiley‐VCH GmbH. Published by John Wiley & Sons Ltd.

Références

Ağaç, D. K., Onuk, B., Gündemir, O., Kabak, M., Manuta, N., Çakar, B., Janeczek, M., Crampton, D. A., & Szara, T. (2024). Comparative cranial geometric morphometrics among Wistar albino, Sprague Dawley, and WAG/Rij rat strains. Animals, 14(9), 1274.
Aytek, A. İ. (2017). Geometrik morfometri. Masrop E‐Dergi, 11(17), 1–7.
Barbosa, A., & Moreno, E. (1999). Evolution of foraging strategies in shorebirds: An ecomorphological approach. The Auk, 1, 712–725.
Bardwell, E., Benkman, C. W., & Gould, W. R. (2001). Adaptive geographic variation in Western scrub‐jays. Ecology, 82, 2617–2627.
Beecher, R. M. (1979). Functional significance of the mandibular symphysis. Journal of Morphology, 159(1), 117–130.
Benkman, C. W. (1988). Seed handling ability, bill structure, and the cost of specialization for crossbills. The Auk, 105(4), 715–719.
Bookstein, F. L. (1997). Morphometric tools for landmark data, (p. 455). Cambridge University Press.
Boz, İ., Manuta, N., Özkan, E., Kahvecioğlu, O., Pazvant, G., Gezer, I. N., Hadžiomerović, N., Szara, T., Altundağ, Y., & Gündemir, O. (2023). Geometric morphometry in veterinary anatomy. Veterinária, 72(1), 15–27.
Bright, J. A., Marugán‐Lobónc, J., Cobbe, S. N., & Rayfield, E. J. (2016). The shapes of bird beaks are highly controlled by nondietary factors. PNAS, 113, 5352–5357.
Campbell, N. A., & Atchley, W. R. (1981). The geometry of canonical variate analysis. Systematic Zoology, 30, 268–280.
Cheng, Y., Gao, B., Wang, H., Han, N., Shao, S., Wu, S., Song, G., Zhang, Y. E., Zhu, X., Lu, X., & Qu, Y. (2017). Evolution of beak morphology in the ground tit revealed by comparative transcriptomics. Frontiers in Zoology, 14, 58. https://doi.org/10.1186/s12983‐017‐0245‐6
Choudhary, O. P., Saini, J., Challana, A., Choudhary, O., Saini, J., & Challana, A. (2023). ChatGPT for veterinary anatomy education: An overview of the prospects and drawbacks. International Journal of Morphology, 41, 1198–1202.
Del Hoyo, J., Elliot, A., Sargatal, J., Christie, D. A., & de Juana, E. (Eds.). (2017). Handbook of the birds of the world alive. Lynx Editions.
Donázar, J., Cortés‐Avizanda, A., Fargallo, J., Margalida, A., Moleón, M., Morales‐Reyes, Z., Moreno‐Opo, R., Pérez‐García, J., Sánchez‐Zapata, J., Zuberogoitia, I., & Serrano, D. (2016). Roles of raptors in a changing world: From flagships to providers of key ecosystem services. Ardeola: Revista ibérica de ornitología, 63, 181–234. https://doi.org/10.13157/arla.63.1.2016.rp8
Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis. Wiley.
Ferguson‐Lees, J., Christie, D. A., Franklin, K., Mead, D., & Burton, P. (2001). Raptors of the world. Helm Identification Guides.
Foster, D. J., Podos, J., & Hendry, A. P. (2008). A geometric morphometric appraisal of beak shape in Darwin's finches. Journal of Evolutionary Biology, 21, 263–275.
Gill, F. B. (1995). Ornithology (2nd ed.). Freeman.
Gjoni Gundemir, M., Yildiz, A., Büyükünal, S., Muratoğlu, K., Özkan, E., Demircioglu, A., Choudhary, O., & Guzel, B. (2024). Evaluation of cold carcasses of Kivircik and Romanov lambs by geometric morphometric method. Kafkas Universitesi Veteriner Fakultesi Dergisi, 30, 87–94.
Gosler, A. (1987). Pattern and process in the bill morphology of the great tit Parus major. Ibis, 129, 451–476.
Grant, P., & Grant, R. (2008). How and why species multiply: The radiation of Darwin's finches. Princeton Univ. Press.
Grant, P. R., & Grant, B. R. (2006). Evolution of character displacement in Darwin's finches. Science, 313, 224–226.
Grant, P. R., & Grant, B. R. (2011). How and why species multiply: The radiation of Darwin's finches. Princeton: University Press.
Greenberg, R., Danner, R., Olsen, B., & Luther, D. (2012). High summer temperature explains bill size variation in salt marsh sparrows. Ecography, 35, 146–152.
Gündemir, O., Duro, S., Szara, T., Koungoulos, L., Jashari, T., Demircioğlu, İ., Hadžiomerović, N., Ilieski, V., Melnyk, O. P., & Melnyk, O. O. (2023). Skull variation in different breeds sheep from Balkan countries. Annals of Anatomy‐Anatomischer Anzeiger, 249, 152083.
Gündemir, O., Koungoulos, L., Szara, T., Duro, S., Spataru, M. C., Michaud, M., & Onar, V. (2023). Cranial morphology of Balkan and west Asian livestock guardian dogs. Journal of Anatomy, 243(6), 951–959.
Gündemir, O., Michaud, M., Altundağ, Y., Karabağlı, M., Onar, V., & Crampton, D. (2024). Chewing asymmetry in dogs: Exploring the importance of the fossa masseterica and first molar teeth morphology. Anatomia, Histologia, Embryologia, 53, e13050.
Hadžiomerović, N., Gundemir, O., Tandir, F., Avdić, R., & Katica, M. (2023). Geometric and morphometric analysis of the auditory ossicles in the red fox (Vulpes vulpes). Animals, 13(7), 1230.
Hertel, F. (1994). Diversity in body size and feeding morphology within past and present vulture assemblages. Ecology, 75, 1074–1084.
Hertel, F. (1995). Ecomorphological indicators of feeding behavior in recent and fossil raptors. Auk, 112, 890–903.
Jashari, T., Kahvecioğlu, O., Duro, S., & Gündemir, O. (2022). Morphometric analysis for the sex determination of the skull of the Deltari Ilir dog (Canis lupus familiaris) of Kosovo. Anatomia, Histologia, Embryologia, 51(4), 443–451.
Kiat, Y., Perlman, G., Balaban, A., Leshem, Y., Izhaki, I., & Charter, M. (2008). Feeding specialization of urban long‐eared owls, Asio otus (Linnaeus, 1758), in Jerusalem, Israel. Zoology in the Middle East, 43, 49–54.
Klingenberg, C. P. (2016). Size, shape, and form: Concepts of allometry in geometric morphometrics. Development Genes and Evolution, 226, 113–137.
Klingenberg, C. P., Barluenga, M., & Meyer, A. (2002). Shape analysis of symmetric structures: Quantifying variation among individuals and asymmetry. Evolution, 56, 1909–1920.
Klingenberg, C. P., & McIntyre, G. S. (1998). Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution, 52(5), 1363–1375.
Klingenberg, C. P., & Morpho, J. (2011). An integrated software package for geometric morphometrics. Molecular Ecology Resources, 11(2), 353–357.
Klingenberg, C. P., & Zaklan, S. D. (2000). Morphological integration between developmental compartments in the drosophila wing. Evolution, 54, 1273–1285.
Kulemeyer, C., Asbahr, K., Gunz, P., Frahnert, S., & Bairlein, F. (2009). Functional morphology and integration of corvid skulls – A 3D geometric morphometric approach. Frontiers in Zoology, 6, 1–14.
Lamichhaney, S., Han, F., Webster, M. T., Andersson, L., Grant, B. R., & Grant, P. R. (2018). Rapid hybrid speciation in Darwin's finches. Science, 359(6372), 224–228.
Levi, W. M. (1972). Making Pigeon Pay. Levi Publications.
Manuta, N., Çakar, B., Gündemir, O., & Spataru, M. C. (2024). Shape and size variations of distal phalanges in cattle. Animals, 14(2), 194.
Manuta, N., Gündemir, O., Yalin, E. E., Karabağli, M., Uçmak, Z. G., Dal, G. E., & Gürbüz, İ. (2023). Pelvis shape analysis with geometric morphometry in crossbreed cats. Anatomia, Histologia, Embryologia, 52(4), 611–618.
McClure, C., Schulwitz, S., Anderson, D., Robinson, B., Mojica, E., Therrien, J.‐F., Oleyar, M., & Johnson, J. (2019). Commentary: Defining raptors and birds of prey. Journal of Raptor Research, 53, 419. https://doi.org/10.3356/0892‐1016‐53.4.419
Meij, M., & Bout, R. (2008). The relationship between the shape of the skull and bite force in finches. The Journal of Experimental Biology, 211, 1668–1680. https://doi.org/10.1242/jeb.015289
Navalón, G., Bright, J. A., Marugán‐Lobón, J., & Rayfield, E. J. (2019). The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. Evolution, 73(3), 422–435.
Olsen, A. M. (2017). Feeding ecology is the primary driver of beak shape diversification in waterfowl. Functional Ecology, 31, 1985–1995.
Pazvant, G., İnce, N. G., Özkan, E., Gündemir, O., Avanus, K., & Szara, T. (2022). Sex determination based on morphometric measurements in yellow‐legged gulls (Larus michahellis) around Istanbul. BMC Zoology, 7(1), 35.
Peterson, A. T. (1993). Adaptive geographical variation in bill shape of scrub jays (Aphelocoma coerulescens). The American Naturalist, 142, 508–527.
Potier, S. (2020). Visual adaptations in predatory and scavenging diurnal raptors. Diversity, 12, 400.
Price, T. (1991). Morphology and ecology of breeding warblers along an altitudinal gradient in Kashmir. Indian Journal of Animal Ecology, 60, 643–664.
Price, T. (2008). Speciation in birds. Roberts and Company.
Rohlf, F. J. (1997). tpsDig: Digitize landmarks and outlines. Version 2.29. Apr 4 [cited 23 Oct 2016].
Rohlf, F. J. (2004). TpsUtil, file utility program. Department of Ecology and Evolution, State University of New York.
Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39, 40–59.
Rubega, M. A. (2002). Feeding in birds: Approaches and opportunities. In K. Schwenk (Ed.), Feeding: Form, function and evolution in tetrapod vertebrates (pp. 395–408). Academic Press.
Schluter, D., & Grant, P. R. (1984). Ecological correlates of morphological evolution in a darwin's finch, geospiza difficilis. Evolution; International Journal of Organic Evolution, 38(4), 856–869.
Schoener, T. W. (2011). The newest synthesis: Understanding the interplay of evolutionary and ecological dynamics. Science. Science, 331(6016), 426–429.
Sekercioglu, C. H. (2006). Increasing awareness of avian ecological function. Trends in Ecology & Evolution, 21(8), 464–471.
Shao, S., Quan, Q., Cai, T., Song, G., Qu, Y., & Lei, F. (2016). Evolution of body morphology and beak shape revealed by a morphometric analysis of 14 Paridae species. Frontiers in Zoology, 13, 30.
Sidlauskas, B. (2008). Continuous and arrested morphological diversification in sister clades of characiform fishes: A phylomorphospace approach. Evolution, 62, 3135–3156.
Sun, Y., Si, G., Wang, X., Wang, K., & Zhang, Z. (2018). Geometric morphometric analysis of skull shape in the Accipitridae. Zoomorphology, 137, 445–456. https://doi.org/10.1007/s00435‐018‐0406‐y
Sustaita, D. (2008). Musculoskeletal underpinnings to differences in killing behavior between north American accipiters (Falconiformes: Accipitridae) and falcons (Falconidae). Journal of Morphology, 269, 283–301.
Symonds, M. R., & Tattersall, G. J. (2010). Geographical variation in bill size across bird species provides evidence for Allen's rule. The American Naturalist, 176, 188–197.
Szara, T., Günay, E., Boz, I., Batmankaya, B., Gencer, H., Gün, G., Vatansever Çelik, E. C., & Gündemir, O. (2023). Bill shape variation in African penguin (Spheniscus demersus) held captive in two zoos. Diversity, 15, 945.
Szara, T., Gündemir, O., Günay, E., Gün, G., Avanus, K., & Pazvant, G. (2024). Sex determination in domestic rock pigeons (Columba livia) using radiographic morphometry. Acta Zoologica, 105(1), 38–45.
Tokita, M., Yano, W., James, H. F., & Abzhanov, A. (2016). Cranial shape evolution in adaptive radiations of birds: Comparative morphometrics of Darwin's finches and Hawaiian honeycreepers. Philosophical Transactions of the Royal Society B, 372, 20150481.
Zelditch, M., Swiderski, D., Sheets, H., & Fink, W. (2004). Geometric morphometrics for biologists: A primer. Elsevier Academic Press.
Zusi, R. L. (1967). The role of the depressor mandibulae muscle in kinesis of the avian skull. Proceedings of the United States National Museum.
Zusi, R. L. (1993). Patterns of diversity in the avian skull. The skull, 2, 391–437.

Auteurs

Buket Çakar (B)

Institute of Graduate Studies, Istanbul University-Cerrahpasa, Istanbul, Turkey.

Eren Çağatay Bulut (EÇ)

Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.

Oya Kahvecioglu (O)

Department of Anatomy, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.

Ebuderda Günay (E)

Department of Wild Animal Diseases and Ecology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.

Iliana Stefanova Ruzhanova-Gospodinova (IS)

Department of Anatomy, Physiology and Animal Sciences, University of Forestry, Sofia, Bulgaria.

Tomasz Szara (T)

Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH