Environmental damping and vibrational coupling of confined fluids within isolated carbon nanotubes.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
03 Jul 2024
Historique:
received: 19 12 2023
accepted: 07 06 2024
medline: 4 7 2024
pubmed: 4 7 2024
entrez: 3 7 2024
Statut: epublish

Résumé

Because of their large surface areas, nanotubes and nanowires demonstrate exquisite mechanical coupling to their surroundings, promising advanced sensors and nanomechanical devices. However, this environmental sensitivity has resulted in several ambiguous observations of vibrational coupling across various experiments. Herein, we demonstrate a temperature-dependent Radial Breathing Mode (RBM) frequency in free-standing, electron-diffraction-assigned Double-Walled Carbon Nanotubes (DWNTs) that shows an unexpected and thermally reversible frequency downshift of 10 to 15%, for systems isolated in vacuum. An analysis based on a harmonic oscillator model assigns the distinctive frequency cusp, produced over 93 scans of 3 distinct DWNTs, along with the hyperbolic trajectory, to a reversible increase in damping from graphitic ribbons on the exterior surface. Strain-dependent coupling from self-tensioned, suspended DWNTs maintains the ratio of spring-to-damping frequencies, producing a stable saturation of RBM in the low-tension limit. In contrast, when the interior of DWNTs is subjected to a water-filling process, the RBM thermal trajectory is altered to that of a Langmuir isobar and elliptical trajectories, allowing measurement of the enthalpy of confined fluid phase change. These mechanisms and quantitative theory provide new insights into the environmental coupling of nanomechanical systems and the implications for devices and nanofluidic conduits.

Identifiants

pubmed: 38961083
doi: 10.1038/s41467-024-49661-8
pii: 10.1038/s41467-024-49661-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5605

Subventions

Organisme : DOE | Office of Science (SC)
ID : DE-SC0019112

Informations de copyright

© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Références

Landry, M. P. et al. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays. Nat. Nanotechnol. 12, 368–377 (2017).
doi: 10.1038/nnano.2016.284 pubmed: 28114298 pmcid: 6438169
Wang, L. et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 4, 159–171 (2020).
doi: 10.1038/s41551-019-0462-8 pubmed: 31659307
Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y. & Gogotsi, Y. Energy storage: the future enabled by nanomaterials. Science 366, eaan8285 (2019).
doi: 10.1126/science.aan8285 pubmed: 31753970
Khivrich, I., Clerk, A. A. & Ilani, S. Nanomechanical pump–probe measurements of insulating electronic states in a carbon nanotube. Nat. Nanotechnol. 14, 161–167 (2019).
doi: 10.1038/s41565-018-0341-6 pubmed: 30643270
Farimani, A. B., Heiranian, M. & Aluru, N. R. Nano-electro-mechanical pump: giant pumping of water in carbon nanotubes. Sci. Rep. 6, 26211 (2016).
doi: 10.1038/srep26211 pubmed: 27193507 pmcid: 4872148
Araujo, P. et al. Resonance Raman spectroscopy of the radial breathing modes in carbon nanotubes. Phys. E Low. Dimens. Syst. Nanostruct. 42, 1251–1261 (2010).
doi: 10.1016/j.physe.2010.01.015
Hirschmann, T. C. et al. Characterization of bundled and individual triple-walled carbon nanotubes by resonant Raman spectroscopy. ACS Nano 7, 2381–2387 (2013).
doi: 10.1021/nn3055708 pubmed: 23311296
Chang, T. Radial breathing mode frequency of single-walled carbon nanotubes under strain. Appl. Phys. Lett. 93, 061901 (2008).
doi: 10.1063/1.2969033
Kumar, R., Aykol, M. & Cronin, S. B. Effect of nanotube-nanotube coupling on the radial breathing mode of carbon nanotubes. Phys. Rev. B 78, 165428 (2008).
doi: 10.1103/PhysRevB.78.165428
Cunha, R. et al. Raman spectroscopy revealing noble gas adsorption on single-walled carbon nanotube bundles. Carbon 127, 312–319 (2018).
doi: 10.1016/j.carbon.2017.11.017
Chiashi, S. et al. Adsorption effects on radial breathing mode of single-walled carbon nanotubes. Phys. Rev. B 91, 155415 (2015).
doi: 10.1103/PhysRevB.91.155415
Faucher, S. et al. Diameter dependence of water filling in lithographically segmented isolated carbon nanotubes. ACS Nano 15, 2778–2790 (2021).
doi: 10.1021/acsnano.0c08634 pubmed: 33512159
Longhurst, M. & Quirke, N. The environmental effect on the radial breathing mode of carbon nanotubes. II. Shell model approximation for internally and externally adsorbed fluids. J. Chem. Phys. 125, 184705 (2006).
doi: 10.1063/1.2360943 pubmed: 17115777
Cambré, S., Schoeters, B., Luyckx, S., Goovaerts, E. & Wenseleers, W. Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5, 3). Phys. Rev. Lett. 104, 207401 (2010).
doi: 10.1103/PhysRevLett.104.207401 pubmed: 20867062
Wenseleers, W., Cambré, S., Čulin, J., Bouwen, A. & Goovaerts, E. Effect of water filling on the electronic and vibrational resonances of carbon nanotubes: Characterizing tube opening by Raman spectroscopy. Adv. Mater. 19, 2274–2278 (2007).
doi: 10.1002/adma.200700773
Fagan, J. A. et al. Separation of empty and water-filled single-wall carbon nanotubes. ACS Nano 5, 3943–3953 (2011).
doi: 10.1021/nn200458t pubmed: 21480636
Araujo, P. T. et al. Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes. Phys. Rev. B 77, 241403 (2008).
doi: 10.1103/PhysRevB.77.241403
Longhurst, M. & Quirke, N. Pressure dependence of the radial breathing mode of carbon nanotubes: the effect of fluid adsorption. Phys. Rev. Lett. 98, 145503 (2007).
doi: 10.1103/PhysRevLett.98.145503 pubmed: 17501286
Lebedkin, S., Arnold, K., Kiowski, O., Hennrich, F. & Kappes, M. M. Raman study of individually dispersed single-walled carbon nanotubes under pressure. Phys. Rev. B 73, 094109 (2006).
doi: 10.1103/PhysRevB.73.094109
Amer, M. S., El-Ashry, M. M. & Maguire, J. F. Study of the hydrostatic pressure dependence of the Raman spectrum of single-walled carbon nanotubes and nanospheres. J. Chem. Phys. 121, 2752–2757 (2004).
doi: 10.1063/1.1768157 pubmed: 15281878
Henrard, L., Hernandez, E., Bernier, P. & Rubio, A. van der Waals interaction in nanotube bundles: consequences on vibrational modes. Phys. Rev. B 60, R8521 (1999).
doi: 10.1103/PhysRevB.60.R8521
Zhang, Y., Zhang, J., Son, H., Kong, J. & Liu, Z. Substrate-induced Raman frequency variation for single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 17156–17157 (2005).
doi: 10.1021/ja056793c pubmed: 16332042
Huang, S., Cai, X. & Liu, J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J. Am. Chem. Soc. 125, 5636–5637 (2003).
doi: 10.1021/ja034475c pubmed: 12733894
Agrawal, K. V., Shimizu, S., Drahushuk, L. W., Kilcoyne, D. & Strano, M. S. Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes. Nat. Nanotechnol. 12, 267–273 (2017).
doi: 10.1038/nnano.2016.254 pubmed: 27893731
Kuehne, M. et al. Impedance of thermal conduction from nanoconfined water in carbon nanotube single-digit nanopores. J. Phys. Chem. C. 125, 25717–25728 (2021).
doi: 10.1021/acs.jpcc.1c08146
Jorio, A., Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Raman Spectroscopy in Graphene Related Systems. (Wiley-VCH, Weinheim, Germany, 2011).
doi: 10.1002/9783527632695
Andooz, A., Eqbalpour, M., Kowsari, E., Ramakrishna, S. & Cheshmeh, Z. A. A comprehensive review on pyrolysis of E-waste and its sustainability. J. Clean. Prod. 333, 130191 (2022).
doi: 10.1016/j.jclepro.2021.130191
Longhurst, M. & Quirke, N. The environmental effect on the radial breathing mode of carbon nanotubes in water. J. Chem. Phys. 124, 234708 (2006).
doi: 10.1063/1.2205852 pubmed: 16821942
Wang, C., Ru, C. & Mioduchowski, A. Applicability and limitations of simplified elastic shell equations for carbon nanotubes. J. Appl. Mech. 71, 622–631 (2004).
doi: 10.1115/1.1778415
Honda, H. et al. Choking effect of single-wall carbon nanotubes on solvent adsorption in radial breathing mode. J. Phys. Chem. C. 111, 3220–3223 (2007).
doi: 10.1021/jp067856w
Venkateswaran, U. et al. High pressure studies of the raman‐active phonons in carbon nanotubes. Phys. Status Solidi B 223, 225–236 (2001).
doi: 10.1002/1521-3951(200101)223:1<225::AID-PSSB225>3.0.CO;2-6
Izard, N., Riehl, D. & Anglaret, E. Exfoliation of single-wall carbon nanotubes in aqueous surfactant suspensions: a Raman study. Phys. Rev. B 71, 195417 (2005).
doi: 10.1103/PhysRevB.71.195417
Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).
doi: 10.1126/science.1136836 pubmed: 17255506
Zhang, C. et al. Mechanical properties of carbon nanotube fibers at extreme temperatures. Nanoscale 11, 4585–4590 (2019).
doi: 10.1039/C8NR09637F pubmed: 30809624
Deng, L. et al. Coefficient of thermal expansion of carbon nanotubes measured by Raman spectroscopy. Appl. Phys. Lett. 104, 051907 (2014).
doi: 10.1063/1.4864056
Kitt, A. L. et al. How graphene slides: measurement and theory of strain-dependent frictional forces between graphene and SiO2. Nano Lett. 13, 2605–2610 (2013).
doi: 10.1021/nl4007112 pubmed: 23627605
Liu, K. et al. Quantum-coupled radial-breathing oscillations in double-walled carbon nanotubes. Nat. Commun. 4, 1375 (2013).
doi: 10.1038/ncomms2367 pubmed: 23340415
Joseph, D. D. Fluid Dynamics Of Viscoelastic Liquids. Vol. 84 (Springer Science & Business Media, 2013).
Travalloni, L., Castier, M., Tavares, F. W. & Sandler, S. I. Thermodynamic modeling of confined fluids using an extension of the generalized van der Waals theory. Chem. Eng. Sci. 65, 3088–3099 (2010).
doi: 10.1016/j.ces.2010.01.032
Travalloni, L., Castier, M. & Tavares, F. W. Phase equilibrium of fluids confined in porous media from an extended Peng–Robinson equation of state. Fluid Phase Equilib. 362, 335–341 (2014).
doi: 10.1016/j.fluid.2013.10.049
Faucher, S. J. Phase Behavior, Filling Dynamics, and Packing of Fluids inside Isolated Carbon Nanotubes (Massachusetts Institute of Technology, 2022).
Jin, Z. et al. Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Lett. 7, 2073–2079 (2007).
doi: 10.1021/nl070980m pubmed: 17555363

Auteurs

Yu-Ming Tu (YM)

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Matthias Kuehne (M)

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Physics, Brown University, Providence, RI, USA.

Rahul Prasanna Misra (RP)

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Cody L Ritt (CL)

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Hananeh Oliaei (H)

Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.

Samuel Faucher (S)

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Haokun Li (H)

Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.

Xintong Xu (X)

Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.

Aubrey Penn (A)

MIT.nano, Massachusetts Institute of Technology, Cambridge, MA, USA.

Sungyun Yang (S)

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Jing Fan Yang (JF)

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Kyle Sendgikoski (K)

Department of Physics, University of Maryland, College Park, MD, USA.

Joshika Chakraverty (J)

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

John Cumings (J)

Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA.

Arun Majumdar (A)

Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
Stanford Precourt Institute for Energy, Stanford, CA, USA.

Narayana R Aluru (NR)

Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA.

Jordan A Hachtel (JA)

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

Daniel Blankschtein (D)

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Michael S Strano (MS)

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. strano@mit.edu.

Classifications MeSH