γδ T cells in human colon adenocarcinomas comprise mainly Vδ1, Vδ2, and Vδ3 cells with distinct phenotype and function.


Journal

Cancer immunology, immunotherapy : CII
ISSN: 1432-0851
Titre abrégé: Cancer Immunol Immunother
Pays: Germany
ID NLM: 8605732

Informations de publication

Date de publication:
02 Jul 2024
Historique:
received: 16 01 2024
accepted: 11 06 2024
medline: 2 7 2024
pubmed: 2 7 2024
entrez: 2 7 2024
Statut: epublish

Résumé

Γδ T cell infiltration into tumours usually correlates with improved patient outcome, but both tumour-promoting and tumoricidal effects of γδ T cells have been documented. Human γδ T cells can be divided into functionally distinct subsets based on T cell receptor (TCR) Vδ usage. Still, the contribution of these different subsets to tumour immunity remains elusive. Here, we provide a detailed γδ T cell profiling in colon tumours, using mass and flow cytometry, mRNA quantification, and TCR sequencing. δ chain usage in both the macroscopically unaffected colon mucosa and tumours varied considerably between patients, with substantial fractions of Vδ1, Vδ2, and non-Vδ1 Vδ2 cells. Sequencing of the Vδ complementarity-determining region 3 showed that almost all non-Vδ1 Vδ2 cells used Vδ3 and that tumour-infiltrating γδ clonotypes were unique for every patient. Non-Vδ1Vδ2 cells from colon tumours expressed several activation markers but few NK cell receptors and exhaustion markers. In addition, mRNA analyses showed that non-Vδ1 Vδ2 cells expressed several genes for proteins with tumour-promoting functions, such as neutrophil-recruiting chemokines, Galectin 3, and transforming growth factor-beta induced. In summary, our results show a large variation in γδ T cell subsets between individual tumours, and that Vδ3 cells make up a substantial proportion of γδ T cells in colon tumours. We suggest that individual γδ T cell composition in colon tumours may contribute to the balance between favourable and adverse immune responses, and thereby also patient outcome.

Identifiants

pubmed: 38953978
doi: 10.1007/s00262-024-03758-7
pii: 10.1007/s00262-024-03758-7
doi:

Substances chimiques

Receptors, Antigen, T-Cell, gamma-delta 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

174

Subventions

Organisme : Vetenskapsrådet
ID : 2021-01008
Organisme : Vetenskapsrådet
ID : 55X-13428
Organisme : Cancerfonden
ID : 22-2080
Organisme : Cancerfonden
ID : 130593
Organisme : Swedish gouvernment
ID : 965065
Organisme : Swedish gouvernment
ID : 144381

Informations de copyright

© 2024. The Author(s).

Références

Kazen AR, Adams EJ (2011) Evolution of the V, D, and J gene segments used in the primate gammadelta T-cell receptor reveals a dichotomy of conservation and diversity. Proc Natl Acad Sci U S A 108:E332–E340. https://doi.org/10.1073/pnas.1105105108
doi: 10.1073/pnas.1105105108 pubmed: 21730193 pmcid: 3141992
Papadopoulou M, Sanchez Sanchez G, Vermijlen D (2020) Innate and adaptive gammadelta T cells: How, when, and why. Immunol Rev 298:99–116. https://doi.org/10.1111/imr.12926
doi: 10.1111/imr.12926 pubmed: 33146423
Clark BL, Thomas PG (2020) A Cell for the ages: human gammadelta T cells across the lifespan. Int J Mol Sci. https://doi.org/10.3390/ijms21238903
doi: 10.3390/ijms21238903 pubmed: 33333825 pmcid: 7765308
Simoes AE, Di Lorenzo B, Silva-Santos B (2018) Molecular Determinants of Target Cell Recognition by Human gammadelta T Cells. Front Immunol 9:929. https://doi.org/10.3389/fimmu.2018.00929
doi: 10.3389/fimmu.2018.00929 pubmed: 29755480 pmcid: 5934422
Mikulak J, Oriolo F, Bruni E et al (2019) NKp46-expressing human gut-resident intraepithelial Vdelta1 T cell subpopulation exhibits high antitumor activity against colorectal cancer. JCI Insight. https://doi.org/10.1172/jci.insight.125884
doi: 10.1172/jci.insight.125884 pubmed: 31689241 pmcid: 6975269
Park JH, Lee HK (2021) Function of gammadelta T cells in tumor immunology and their application to cancer therapy. Exp Mol Med 53:318–327. https://doi.org/10.1038/s12276-021-00576-0
doi: 10.1038/s12276-021-00576-0 pubmed: 33707742 pmcid: 8080836
Gentles AJ, Newman AM, Liu CL et al (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21:938–945. https://doi.org/10.1038/nm.3909
doi: 10.1038/nm.3909 pubmed: 26193342 pmcid: 4852857
Meraviglia S, Lo Presti E, Tosolini M et al (2017) Distinctive features of tumor-infiltrating gammadelta T lymphocytes in human colorectal cancer. Oncoimmunology 6:e1347742. https://doi.org/10.1080/2162402X.2017.1347742
doi: 10.1080/2162402X.2017.1347742 pubmed: 29123962 pmcid: 5665062
Thorsson V, Gibbs DL, Brown SD et al (2018) The Immune Landscape of Cancer. Immunity 48(812–30):e14. https://doi.org/10.1016/j.immuni.2018.03.023
doi: 10.1016/j.immuni.2018.03.023
Yu L, Wang Z, Hu Y, Wang Y, Lu N, Zhang C (2023) Tumor-infiltrating gamma delta T-cells reveal exhausted subsets with remarkable heterogeneity in colorectal cancer. Int J Cancer 153:1684–1697. https://doi.org/10.1002/ijc.34669
doi: 10.1002/ijc.34669 pubmed: 37531161
Harmon C, Zaborowski A, Moore H et al (2023) gammadelta T cell dichotomy with opposing cytotoxic and wound healing functions in human solid tumors. Nat Cancer 4:1122–1137. https://doi.org/10.1038/s43018-023-00589-w
doi: 10.1038/s43018-023-00589-w pubmed: 37474835
Tosolini M, Kirilovsky A, Mlecnik B et al (2011) Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res 71:1263–1271. https://doi.org/10.1158/0008-5472.CAN-10-2907
doi: 10.1158/0008-5472.CAN-10-2907 pubmed: 21303976
Bindea G, Mlecnik B, Tosolini M et al (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39:782–795. https://doi.org/10.1016/j.immuni.2013.10.003
doi: 10.1016/j.immuni.2013.10.003 pubmed: 24138885
Ma S, Cheng Q, Cai Y et al (2014) IL-17A produced by gammadelta T cells promotes tumor growth in hepatocellular carcinoma. Cancer Res 74:1969–1982. https://doi.org/10.1158/0008-5472.CAN-13-2534
doi: 10.1158/0008-5472.CAN-13-2534 pubmed: 24525743
Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH (2009) Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31:331–341. https://doi.org/10.1016/j.immuni.2009.08.001
doi: 10.1016/j.immuni.2009.08.001 pubmed: 19682929
Wu D, Wu P, Qiu F, Wei Q, Huang J (2017) Human gammadeltaT-cell subsets and their involvement in tumor immunity. Cell Mol Immunol 14:245–253. https://doi.org/10.1038/cmi.2016.55
doi: 10.1038/cmi.2016.55 pubmed: 27890919
Sundstrom P, Szeponik L, Ahlmanner F, Sundquist M, Wong JSB, Lindskog EB, Gustafsson B, Quiding-Jarbrink M (2019) Tumor-infiltrating mucosal-associated invariant T (MAIT) cells retain expression of cytotoxic effector molecules. Oncotarget 10:2810–2823. https://doi.org/10.18632/oncotarget.26866
doi: 10.18632/oncotarget.26866 pubmed: 31073372 pmcid: 6497460
Lundgren A, Stromberg E, Sjoling A et al (2005) Mucosal FOXP3-expressing CD4+ CD25high regulatory T cells in Helicobacter pylori-infected patients. Infect Immun 73:523–531. https://doi.org/10.1128/IAI.73.1.523-531.2005
doi: 10.1128/IAI.73.1.523-531.2005 pubmed: 15618192 pmcid: 538965
Liang F, Rezapour A, Falk P, Angenete E, Yrlid U (2021) Cryopreservation of whole tumor biopsies from rectal cancer patients enable phenotypic and in vitro functional evaluation of tumor-infiltrating T cells. Cancers (Basel). https://doi.org/10.3390/cancers13102428
doi: 10.3390/cancers13102428 pubmed: 35008209 pmcid: 8228429
Johansson G, Kaltak M, Rimniceanu C et al (2020) Ultrasensitive DNA Immune Repertoire Sequencing Using Unique Molecular Identifiers. Clin Chem 66:1228–1237. https://doi.org/10.1093/clinchem/hvaa159
doi: 10.1093/clinchem/hvaa159 pubmed: 32814950
Shugay M, Britanova OV, Merzlyak EM et al (2014) Towards error-free profiling of immune repertoires. Nat Methods 11:653–655. https://doi.org/10.1038/nmeth.2960
doi: 10.1038/nmeth.2960 pubmed: 24793455
Szeponik L, Ahlmanner F, Sundstrom P, Rodin W, Gustavsson B, Bexe Lindskog E, Wettergren Y, Quiding-Jarbrink M (2021) Intratumoral regulatory T cells from colon cancer patients comprise several activated effector populations. BMC Immunol 22:58. https://doi.org/10.1186/s12865-021-00449-1
doi: 10.1186/s12865-021-00449-1 pubmed: 34407765 pmcid: 8375143
Mei HE, Leipold MD, Schulz AR, Chester C, Maecker HT (2015) Barcoding of live human peripheral blood mononuclear cells for multiplexed mass cytometry. J Immunol 194:2022–2031. https://doi.org/10.4049/jimmunol.1402661
doi: 10.4049/jimmunol.1402661 pubmed: 25609839
Davey MS, Willcox CR, Hunter S et al (2018) The human Vdelta2(+) T-cell compartment comprises distinct innate-like Vgamma9(+) and adaptive Vgamma9(-) subsets. Nat Commun 9:1760. https://doi.org/10.1038/s41467-018-04076-0
doi: 10.1038/s41467-018-04076-0 pubmed: 29720665 pmcid: 5932074
Odaira K, Kimura SN, Fujieda N, Kobayashi Y, Kambara K, Takahashi T, Izumi T, Matsushita H, Kakimi K (2016) CD27(-)CD45(+) gammadelta T cells can be divided into two populations, CD27(-)CD45(int) and CD27(-)CD45(hi) with little proliferation potential. Biochem Biophys Res Commun 478:1298–1303. https://doi.org/10.1016/j.bbrc.2016.08.115
doi: 10.1016/j.bbrc.2016.08.115 pubmed: 27553282
Reis BS, Darcy PW, Khan IZ et al (2022) TCR-Vgammadelta usage distinguishes protumor from antitumor intestinal gammadelta T cell subsets. Science 377:276–284. https://doi.org/10.1126/science.abj8695
doi: 10.1126/science.abj8695 pubmed: 35857588 pmcid: 9326786
Wu P, Wu D, Ni C et al (2014) gammadeltaT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 40:785–800. https://doi.org/10.1016/j.immuni.2014.03.013
doi: 10.1016/j.immuni.2014.03.013 pubmed: 24816404 pmcid: 4716654
Pizzolato G, Kaminski H, Tosolini M et al (2019) Single-cell RNA sequencing unveils the shared and the distinct cytotoxic hallmarks of human TCRVdelta1 and TCRVdelta2 gammadelta T lymphocytes. Proc Natl Acad Sci U S A 116:11906–11915. https://doi.org/10.1073/pnas.1818488116
doi: 10.1073/pnas.1818488116 pubmed: 31118283 pmcid: 6576116
Marlin R, Pappalardo A, Kaminski H et al (2017) Sensing of cell stress by human gammadelta TCR-dependent recognition of annexin A2. Proc Natl Acad Sci U S A 114:3163–3168. https://doi.org/10.1073/pnas.1621052114
doi: 10.1073/pnas.1621052114 pubmed: 28270598 pmcid: 5373368
Mangan BA, Dunne MR, O’Reilly VP, Dunne PJ, Exley MA, O’Shea D, Scotet E, Hogan AE, Doherty DG (2013) Cutting edge: CD1d restriction and Th1/Th2/Th17 cytokine secretion by human Vdelta3 T cells. J Immunol 191:30–34. https://doi.org/10.4049/jimmunol.1300121
doi: 10.4049/jimmunol.1300121 pubmed: 23740951
Rice MT, von Borstel A, Chevour P et al (2021) Recognition of the antigen-presenting molecule MR1 by a Vdelta3(+) gammadelta T cell receptor. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2110288118
doi: 10.1073/pnas.2110288118 pubmed: 34845016 pmcid: 8694053
Bedard M, Shrestha D, Priestman DA et al (2019) Sterile activation of invariant natural killer T cells by ER-stressed antigen-presenting cells. Proc Natl Acad Sci U S A 116:23671–23681. https://doi.org/10.1073/pnas.1910097116
doi: 10.1073/pnas.1910097116 pubmed: 31690657 pmcid: 6876220
Ussher JE, van Wilgenburg B, Hannaway RF et al (2016) TLR signaling in human antigen-presenting cells regulates MR1-dependent activation of MAIT cells. Eur J Immunol 46:1600–1614. https://doi.org/10.1002/eji.201545969
doi: 10.1002/eji.201545969 pubmed: 27105778 pmcid: 5297987
Hunter S, Willcox CR, Davey MS, Kasatskaya SA, Jeffery HC, Chudakov DM, Oo YH, Willcox BE (2018) Human liver infiltrating gammadelta T cells are composed of clonally expanded circulating and tissue-resident populations. J Hepatol 69:654–665. https://doi.org/10.1016/j.jhep.2018.05.007
doi: 10.1016/j.jhep.2018.05.007 pubmed: 29758330 pmcid: 6089840
Wu Y, Biswas D, Usaite I et al (2022) A local human Vdelta1 T cell population is associated with survival in nonsmall-cell lung cancer. Nat Cancer 3:696–709. https://doi.org/10.1038/s43018-022-00376-z
doi: 10.1038/s43018-022-00376-z pubmed: 35637401 pmcid: 9236901
Foord E, Arruda LCM, Gaballa A, Klynning C, Uhlin M (2021) Characterization of ascites- and tumor-infiltrating gammadelta T cells reveals distinct repertoires and a beneficial role in ovarian cancer. Sci Transl Med. https://doi.org/10.1126/scitranslmed.abb0192
doi: 10.1126/scitranslmed.abb0192 pubmed: 33472952
Willcox BE, Willcox CR (2019) gammadelta TCR ligands: the quest to solve a 500-million-year-old mystery. Nat Immunol 20:121–128. https://doi.org/10.1038/s41590-018-0304-y
doi: 10.1038/s41590-018-0304-y pubmed: 30664765
Wu D, Wu P, Wu X et al (2015) Ex vivo expanded human circulating Vdelta1 gammadeltaT cells exhibit favorable therapeutic potential for colon cancer. Oncoimmunology 4:e992749. https://doi.org/10.4161/2162402X.2014.992749
doi: 10.4161/2162402X.2014.992749 pubmed: 25949914 pmcid: 4404819
Cazzetta V, Bruni E, Terzoli S et al (2021) NKG2A expression identifies a subset of human Vdelta2 T cells exerting the highest antitumor effector functions. Cell Rep 37:109871. https://doi.org/10.1016/j.celrep.2021.109871
doi: 10.1016/j.celrep.2021.109871 pubmed: 34686325
Corona A, Blobe GC (2021) The role of the extracellular matrix protein TGFBI in cancer. Cell Signal 84:110028. https://doi.org/10.1016/j.cellsig.2021.110028
doi: 10.1016/j.cellsig.2021.110028 pubmed: 33940163
Patry M, Teinturier R, Goehrig D, Zetu C, Ripoche D, Kim IS, Bertolino P, Hennino A (2015) Betaig-h3 represses T-cell activation in type 1 diabetes. Diabetes 64:4212–4219. https://doi.org/10.2337/db15-0638
doi: 10.2337/db15-0638 pubmed: 26470788
Lecker LSM, Berlato C, Maniati E et al (2021) TGFBI production by macrophages contributes to an immunosuppressive microenvironment in ovarian cancer. Cancer Res 81:5706–5719. https://doi.org/10.1158/0008-5472.CAN-21-0536
doi: 10.1158/0008-5472.CAN-21-0536 pubmed: 34561272 pmcid: 9397609
Wu KL, Huang EY, Yeh WL, Hsiao CC, Kuo CM (2017) Synergistic interaction between galectin-3 and carcinoembryonic antigen promotes colorectal cancer metastasis. Oncotarget 8:61935–61943. https://doi.org/10.18632/oncotarget.18721
doi: 10.18632/oncotarget.18721 pubmed: 28977916 pmcid: 5617476
Wang C, Zhou X, Ma L et al (2019) Galectin-3 may serve as a marker for poor prognosis in colorectal cancer: a meta-analysis. Pathol Res Pract 215:152612. https://doi.org/10.1016/j.prp.2019.152612
doi: 10.1016/j.prp.2019.152612 pubmed: 31474314
Szeponik L, Akeus P, Rodin W, Raghavan S, Quiding-Jarbrink M (2020) Regulatory T cells specifically suppress conventional CD8alphabeta T cells in intestinal tumors of APC(Min/+) mice. Cancer Immunol Immunother 69:1279–1292. https://doi.org/10.1007/s00262-020-02540-9
doi: 10.1007/s00262-020-02540-9 pubmed: 32185408 pmcid: 7303072
Amicarella F, Muraro MG, Hirt C et al (2017) Dual role of tumour-infiltrating T helper 17 cells in human colorectal cancer. Gut 66:692–704. https://doi.org/10.1136/gutjnl-2015-310016
doi: 10.1136/gutjnl-2015-310016 pubmed: 26719303

Auteurs

William Rodin (W)

Department of Immunology and Microbiology, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden.

Louis Szeponik (L)

Department of Immunology and Microbiology, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden.

Tsvetanka Rangelova (T)

Department of Immunology and Microbiology, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden.

Firaol Tamiru Kebede (F)

Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden.

Tobias Österlund (T)

Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.

Patrik Sundström (P)

Department of Immunology and Microbiology, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden.

Stephen Hogg (S)

Department of Immunology and Microbiology, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden.

Yvonne Wettergren (Y)

Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden.
Department of Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.

Antonio Cosma (A)

National Cytometry Platform, Luxemburg Institute of Health, Esch-sur-Alzette, Luxemburg.

Anders Ståhlberg (A)

Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden.
Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.

Elinor Bexe Lindskog (E)

Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden.
Department of Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.

Marianne Quiding Järbrink (M)

Department of Immunology and Microbiology, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden. marianne.quiding@microbio.gu.se.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH