Iterative Motion Correction Technique with Deep Learning Reconstruction for Brain MRI: A Volunteer and Patient Study.
Artificial intelligence
Brain
Deep learning
Magnetic resonance imaging
Motion artifact
Journal
Journal of imaging informatics in medicine
ISSN: 2948-2933
Titre abrégé: J Imaging Inform Med
Pays: Switzerland
ID NLM: 9918663679206676
Informations de publication
Date de publication:
28 Jun 2024
28 Jun 2024
Historique:
received:
19
04
2024
accepted:
18
06
2024
revised:
03
06
2024
medline:
29
6
2024
pubmed:
29
6
2024
entrez:
28
6
2024
Statut:
aheadofprint
Résumé
The aim of this study was to investigate the effect of iterative motion correction (IMC) on reducing artifacts in brain magnetic resonance imaging (MRI) with deep learning reconstruction (DLR). The study included 10 volunteers (between September 2023 and December 2023) and 30 patients (between June 2022 and July 2022) for quantitative and qualitative analyses, respectively. Volunteers were instructed to remain still during the first MRI with fluid-attenuated inversion recovery sequence (FLAIR) and to move during the second scan. IMCoff DLR images were reconstructed from the raw data of the former acquisition; IMCon and IMCoff DLR images were reconstructed from the latter acquisition. After registration of the motion images, the structural similarity index measure (SSIM) was calculated using motionless images as reference. For qualitative analyses, IMCon and IMCoff FLAIR DLR images of the patients were reconstructed and evaluated by three blinded readers in terms of motion artifacts, noise, and overall quality. SSIM for IMCon images was 0.952, higher than that for IMCoff images (0.949) (p < 0.001). In qualitative analyses, although noise in IMCon images was rated as increased by two of the three readers (both p < 0.001), all readers agreed that motion artifacts and overall quality were significantly better in IMCon images than in IMCoff images (all p < 0.001). In conclusion, IMC reduced motion artifacts in brain FLAIR DLR images while maintaining similarity to motionless images.
Identifiants
pubmed: 38942939
doi: 10.1007/s10278-024-01184-w
pii: 10.1007/s10278-024-01184-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.
Références
Okimoto N, Yasaka K, Fujita N, Watanabe Y, Kanzawa J, Abe O (2023) Deep learning reconstruction for improving the visualization of acute brain infarct on computed tomography. Neuroradiology. https://doi.org/10.1007/s00234-023-03251-5 .
doi: 10.1007/s00234-023-03251-5
pubmed: 37991522
pmcid: 10761512
Watanabe R, Ogawa M, Kitaoka R, Funama Y (2017) [Influence on Head Computed Tomography Image by Difference of Beam Hardening Correction Method]. Nihon Hoshasen Gijutsu Gakkai Zasshi 73(12):1207–1215. https://doi.org/10.6009/jjrt.2017_JSRT_73.12.1207 .
doi: 10.6009/jjrt.2017_JSRT_73.12.1207
pubmed: 29269615
Love A, Olsson ML, Siemund R, Stalhammar F, Bjorkman-Burtscher IM, Soderberg M (2013) Six iterative reconstruction algorithms in brain CT: a phantom study on image quality at different radiation dose levels. Br J Radiol 86(1031):20130388. https://doi.org/10.1259/bjr.20130388 .
doi: 10.1259/bjr.20130388
pubmed: 24049128
pmcid: 3830436
Zaitsev M, Maclaren J, Herbst M (2015) Motion artifacts in MRI: A complex problem with many partial solutions. J Magn Reson Imaging 42(4):887–901. https://doi.org/10.1002/jmri.24850 .
doi: 10.1002/jmri.24850
pubmed: 25630632
pmcid: 4517972
Wood ML, Henkelman RM (1985) MR image artifacts from periodic motion. Med Phys 12(2):143–151. https://doi.org/10.1118/1.595782 .
doi: 10.1118/1.595782
pubmed: 4000069
Van de Walle R, Lemahieu I, Achten E (1997) Magnetic resonance imaging and the reduction of motion artifacts: review of the principles. Technol Health Care 5(6):419–435.
pubmed: 9696161
Yasaka K, Akai H, Kunimatsu A, Kiryu S, Abe O (2018) Deep learning with convolutional neural network in radiology. Jpn J Radiol 36(4):257–272. https://doi.org/10.1007/s11604-018-0726-3 .
doi: 10.1007/s11604-018-0726-3
pubmed: 29498017
Chartrand G, Cheng PM, Vorontsov E et al (2017) Deep Learning: A Primer for Radiologists. Radiographics 37(7):2113–2131. https://doi.org/10.1148/rg.2017170077 .
doi: 10.1148/rg.2017170077
pubmed: 29131760
Yasaka K, Abe O (2018) Deep learning and artificial intelligence in radiology: Current applications and future directions. PLoS Med 15(11):e1002707. https://doi.org/10.1371/journal.pmed.1002707 .
doi: 10.1371/journal.pmed.1002707
pubmed: 30500815
pmcid: 6267951
Kiryu S, Akai H, Yasaka K et al (2023) Clinical Impact of Deep Learning Reconstruction in MRI. Radiographics 43(6):e220133. https://doi.org/10.1148/rg.220133 .
doi: 10.1148/rg.220133
pubmed: 37200221
Yasaka K, Akai H, Sugawara H et al (2022) Impact of deep learning reconstruction on intracranial 1.5 T magnetic resonance angiography. Jpn J Radiol 40(5):476–483. https://doi.org/10.1007/s11604-021-01225-2 .
doi: 10.1007/s11604-021-01225-2
pubmed: 34851499
Tajima T, Akai H, Yasaka K et al (2023) Usefulness of deep learning-based noise reduction for 1.5 T MRI brain images. Clin Radiol 78(1):e13–e21. https://doi.org/10.1016/j.crad.2022.08.127 .
doi: 10.1016/j.crad.2022.08.127
pubmed: 36116967
Kidoh M, Shinoda K, Kitajima M et al (2020) Deep Learning Based Noise Reduction for Brain MR Imaging: Tests on Phantoms and Healthy Volunteers. Magn Reson Med Sci 19(3):195–206. https://doi.org/10.2463/mrms.mp.2019-0018 .
doi: 10.2463/mrms.mp.2019-0018
pubmed: 31484849
Yasaka K, Tanishima T, Ohtake Y et al (2022) Deep learning reconstruction for 1.5 T cervical spine MRI: effect on interobserver agreement in the evaluation of degenerative changes. Eur Radiol 32(9):6118–6125. https://doi.org/10.1007/s00330-022-08729-z .
doi: 10.1007/s00330-022-08729-z
pubmed: 35348861
Akai H, Yasaka K, Sugawara H et al (2023) Acceleration of knee magnetic resonance imaging using a combination of compressed sensing and commercially available deep learning reconstruction: a preliminary study. BMC Med Imaging 23(1):5. https://doi.org/10.1186/s12880-023-00962-2 .
doi: 10.1186/s12880-023-00962-2
pubmed: 36624404
pmcid: 9827641
Tajima T, Akai H, Yasaka K et al (2022) Clinical feasibility of an abdominal thin-slice breath-hold single-shot fast spin echo sequence processed using a deep learning-based noise-reduction approach. Magn Reson Imaging 90:76–83. https://doi.org/10.1016/j.mri.2022.04.005 .
doi: 10.1016/j.mri.2022.04.005
pubmed: 35504409
Mori H, Aoki S, Abe O et al (2002) [Evaluation of PROPELLER MR imaging: preliminary experiences]. Nihon Igaku Hoshasen Gakkai Zasshi 62(6):287–289.
pubmed: 12073636
Kojima T, Yabuuchi H, Narita H et al (2016) Efficacy of the radial acquisition regime (RADAR) for acquiring head and neck MR images. Br J Radiol 89(1067):20160007. https://doi.org/10.1259/bjr.20160007 .
doi: 10.1259/bjr.20160007
pubmed: 27635791
pmcid: 5124827
Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42(5):963–969. https://doi.org/10.1002/(sici)1522-2594(199911)42:5<963::aid-mrm17>3.0.co;2-l .
doi: 10.1002/(sici)1522-2594(199911)42:5<963::aid-mrm17>3.0.co;2-l
pubmed: 10542356
Cordero-Grande L, Teixeira RPAG, Hughes EJ, Hutter J, Price AN, Hajnal JV (2016) Sensitivity encoding for aligned multishot magnetic resonance reconstruction. IEEE Trans Comput Imaging 2(3):266–280. https://doi.org/10.1109/TCI.2016.2557069 .
doi: 10.1109/TCI.2016.2557069
Hu P, Hong S, Moghari MH et al (2011) Motion correction using coil arrays (MOCCA) for free-breathing cardiac cine MRI. Magn Reson Med 66(2):467–475. https://doi.org/10.1002/mrm.22854 .
doi: 10.1002/mrm.22854
pubmed: 21773986
pmcid: 4239121
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. https://doi.org/10.1109/tip.2003.819861 .
doi: 10.1109/tip.2003.819861
pubmed: 15376593
Kojima S, Morita S, Ueno E, Hirata M, Shinohara H, Komori A (2011) Aliasing artifacts with the BLADE technique: causes and effective suppression. J Magn Reson Imaging 33(2):432–440. https://doi.org/10.1002/jmri.22465 .
doi: 10.1002/jmri.22465
pubmed: 21274986
Yoshida N, Kageyama H, Akai H et al (2022) Motion correction in MR image for analysis of VSRAD using generative adversarial network. PLoS One 17(9):e0274576. https://doi.org/10.1371/journal.pone.0274576 .
doi: 10.1371/journal.pone.0274576
pubmed: 36103561
pmcid: 9473426