Modeling the Evolution of S. pombe Populations with Multiple Killer Meiotic Drivers.
gamete-killers
gene drive
meiotic driver
two-locus evolution
Journal
G3 (Bethesda, Md.)
ISSN: 2160-1836
Titre abrégé: G3 (Bethesda)
Pays: England
ID NLM: 101566598
Informations de publication
Date de publication:
28 Jun 2024
28 Jun 2024
Historique:
received:
23
05
2024
revised:
23
05
2024
accepted:
03
06
2024
medline:
28
6
2024
pubmed:
28
6
2024
entrez:
28
6
2024
Statut:
aheadofprint
Résumé
Meiotic drivers are selfish genetic loci that can be transmitted to more than half of the viable gametes produced by a heterozygote. This biased transmission gives meiotic drivers an evolutionary advantage that can allow them to spread over generations until all members of a population carry the driver. This evolutionary power can also be exploited to modify natural populations using synthetic drivers known as 'gene drives.' Recently, it has become clear that natural drivers can spread within genomes to birth multicopy gene families. To understand intragenomic spread of drivers, we model the evolution of two or more distinct meiotic drivers in a population. We employ the wtf killer meiotic drivers from Schizosaccharomyces pombe, which are multicopy in all sequenced isolates, as models. We find that a duplicate wtf driver identical to the parent gene can spread in a population unless, or until, the original driver is fixed. When the duplicate driver diverges to be distinct from the parent gene, we find that both drivers spread to fixation under most conditions, but both drivers can be lost under some conditions. Finally, we show that stronger drivers make weaker drivers go extinct in most, but not all, polymorphic populations with absolutely linked drivers. These results reveal the strong potential for natural meiotic drive loci to duplicate and diverge within genomes. Our findings also highlight duplication potential as a factor to consider in the design of synthetic gene drives.
Identifiants
pubmed: 38938172
pii: 7700925
doi: 10.1093/g3journal/jkae142
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© The Author(s) 2024. Published by Oxford University Press on behalf of The Genetics Society of America.