Implications of unconventional histological subtypes on magnetic resonance imaging and oncological outcomes in patients who have undergone radical prostatectomy.
Cribriform
Ductal carcinoma
Intra-ductal carcinoma of the prostate
PI-RADS v2.1
Radical prostatectomy
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
27 06 2024
27 06 2024
Historique:
received:
20
01
2024
accepted:
24
06
2024
medline:
28
6
2024
pubmed:
28
6
2024
entrez:
27
6
2024
Statut:
epublish
Résumé
The prognostic significance of unconventional histology (UH) subtypes including intraductal carcinoma of the prostate (IDC-P), ductal adenocarcinoma, and cribriform pattern has been investigated for prostate cancer (PCa). However, little is known about magnetic resonance imaging (MRI) features and the oncological impact of tumor localization in localized PCa with UH. Clinical data of 211 patients with acinar adenocarcinoma (conventional histology [CH]) and 82 patients with UH who underwent robotic-assisted radical prostatectomy (RARP) were reviewed. Patients with UH are more likely to be older and have higher Gleason grade group, higher Prostate Imaging-Reporting and Data System (PI-RADS) v2.1 score, and larger tumor volume (TV) than those with CH. Multivariate analysis identified the presence of UH as an independent prognostic factor for progression-free survival (PFS) (hazard ration (HR) 2.41, 95% confidence interval (CI) 0.22-0.79, P = 0.0073). No significant difference in PFS was seen regarding tumor localization (transition zone [TZ] or peripheral zone [PZ]) in patients with UH (P = 0.8949), whereas PZ cancer showed shorter PFS in patients with CH (P = 0.0174). PCa with UH was associated with higher progression than PCa with CH among resection margin (RM)-negative cases (P < 0.0001). Further, increased PI-RADS v2.1 score did not correlate with larger TV in UH (P = 0.991), whereas a significant difference in TV was observed in CH (P < 0.0001). The prognostic significance of UH tumor was independent of tumor localization, and shorter PFS was observed even in RM-negative cases, indicating an aggressive subtype with micro-metastatic potential. Furthermore, UH tumors are more likely to harbor a large TV despite PI-RADS v2.1 score ≤ 3. These findings will help optimal perioperative management for PCa with UH.
Identifiants
pubmed: 38937563
doi: 10.1038/s41598-024-65681-2
pii: 10.1038/s41598-024-65681-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
14868Subventions
Organisme : Japan Society for the Promotion of Science
ID : 23K19497
Informations de copyright
© 2024. The Author(s).
Références
Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48. https://doi.org/10.3322/caac.21763 (2023).
doi: 10.3322/caac.21763
pubmed: 36633525
Pishgar, F., Ebrahimi, H., Saeedi Moghaddam, S., Fitzmaurice, C. & Amini, E. Global, regional and national burden of prostate cancer, 1990 to 2015: Results from the global burden of disease study 2015. J. Urol. 199, 1224–1232. https://doi.org/10.1016/j.juro.2017.10.044 (2018).
doi: 10.1016/j.juro.2017.10.044
pubmed: 29129779
Marra, G. et al. Impact of epithelial histological types, subtypes, and growth patterns on oncological outcomes for patients with nonmetastatic prostate cancer treated with curative intent: A systematic review. Eur. Urol. 84, 65–85. https://doi.org/10.1016/j.eururo.2023.03.014 (2023).
doi: 10.1016/j.eururo.2023.03.014
pubmed: 37117107
Kovi, J., Jackson, M. A. & Heshmat, M. Y. Ductal spread in prostatic carcinoma. Cancer 56, 1566–1573. https://doi.org/10.1002/1097-0142(19851001)56:7%3c1566::aid-cncr2820560717%3e3.0.co;2-y (1985).
doi: 10.1002/1097-0142(19851001)56:7<1566::aid-cncr2820560717>3.0.co;2-y
pubmed: 4027893
Cohen, R. J., Wheeler, T. M., Bonkhoff, H. & Rubin, M. A. A proposal on the identification, histologic reporting, and implications of intraductal prostatic carcinoma. Arch. Pathol. Lab. Med. 131, 1103–1109. https://doi.org/10.5858/2007-131-1103-apotih (2007).
doi: 10.5858/2007-131-1103-apotih
pubmed: 17616999
McNeal, J. E. & Yemoto, C. E. Spread of adenocarcinoma within prostatic ducts and acini. Morphologic and clinical correlations. Am. J. Surg. Pathol. 20, 802–814. https://doi.org/10.1097/00000478-199607000-00003 (1996).
doi: 10.1097/00000478-199607000-00003
pubmed: 8669528
Aizawa, R. et al. Clinical significance of IDC-P as predictive factor after intensity-modulated radiation therapy. Cancer Sci. 113, 2425–2433. https://doi.org/10.1111/cas.15392 (2022).
doi: 10.1111/cas.15392
pubmed: 35514196
pmcid: 9277254
Yamamoto, A. et al. Propensity score-matched comparison of docetaxel and androgen receptor axis-targeted agents in patients with castration-resistant intraductal carcinoma of the prostate. BJU Int. 125, 702–708. https://doi.org/10.1111/bju.14970 (2020).
doi: 10.1111/bju.14970
pubmed: 31833179
Kimura, K. et al. Prognostic value of intraductal carcinoma of the prostate in radical prostatectomy specimens. The Prostate 74, 680–687. https://doi.org/10.1002/pros.22786 (2014).
doi: 10.1002/pros.22786
pubmed: 24481730
Miura, N. et al. The prognostic impact of intraductal carcinoma of the prostate: A systematic review and meta-analysis. J. Urol. 204, 909–917. https://doi.org/10.1097/ju.0000000000001290 (2020).
doi: 10.1097/ju.0000000000001290
pubmed: 32698712
Surintrspanont, J. & Zhou, M. Prostate pathology: What is new in the 2022 WHO classification of urinary and male genital tumors?. Pathologica 115, 41–56. https://doi.org/10.32074/1591-951x-822 (2022).
doi: 10.32074/1591-951x-822
pubmed: 36645399
Tohi, Y. et al. Clinical outcomes of intraductal carcinoma or cribriform in radical prostatectomy specimens of men opting for active surveillance: Data from the PRIAS-JAPAN study. Int. J. Clin. Oncol. 28, 299–305. https://doi.org/10.1007/s10147-022-02277-8 (2023).
doi: 10.1007/s10147-022-02277-8
pubmed: 36472710
Oufattole, J., Dey, T., D’Amico, A. V., van Leenders, G. & Acosta, A. M. Cribriform morphology is associated with higher risk of biochemical recurrence after radical prostatectomy in patients with Grade Group 5 prostate cancer. Histopathology 82, 1089–1097. https://doi.org/10.1111/his.14901 (2023).
doi: 10.1111/his.14901
pubmed: 36939057
Vinceneux, A. et al. Ductal adenocarcinoma of the prostate: Clinical and biological profiles. The Prostate 77, 1242–1250. https://doi.org/10.1002/pros.23383 (2017).
doi: 10.1002/pros.23383
pubmed: 28699202
Bettendorf, O. et al. Chromosomal imbalances, loss of heterozygosity, and immunohistochemical expression of TP53, RB1, and PTEN in intraductal cancer, intraepithelial neoplasia, and invasive adenocarcinoma of the prostate. Genes Chromosomes Cancer 47, 565–572. https://doi.org/10.1002/gcc.20560 (2008).
doi: 10.1002/gcc.20560
pubmed: 18383208
Shah, R. B. et al. PTEN loss in prostatic adenocarcinoma correlates with specific adverse histologic features (intraductal carcinoma, cribriform Gleason pattern 4 and stromogenic carcinoma). The Prostate 79, 1267–1273. https://doi.org/10.1002/pros.23831 (2019).
doi: 10.1002/pros.23831
pubmed: 31111513
Wang, Y. et al. Development and validation of a nomogram based on biparametric MRI PI-RADS v2.1 and clinical parameters to avoid unnecessary prostate biopsies. BMC Med. Imaging 23, 106. https://doi.org/10.1186/s12880-023-01074-7 (2023).
doi: 10.1186/s12880-023-01074-7
pubmed: 37582697
pmcid: 10426075
Barentsz, J. O. et al. ESUR prostate MR guidelines 2012. Eur. Radiol. 22, 746–757. https://doi.org/10.1007/s00330-011-2377-y (2012).
doi: 10.1007/s00330-011-2377-y
pubmed: 22322308
pmcid: 3297750
Lantz, A. et al. Functional and oncological outcomes after open versus robot-assisted laparoscopic radical prostatectomy for localised prostate cancer: 8-year follow-up. Eur. Urol. 80, 650–660. https://doi.org/10.1016/j.eururo.2021.07.025 (2021).
doi: 10.1016/j.eururo.2021.07.025
pubmed: 34538508
Porter, L. H. et al. Systematic review links the prevalence of intraductal carcinoma of the prostate to prostate cancer risk categories. Eur. Urol. 72, 492–495. https://doi.org/10.1016/j.eururo.2017.03.013 (2017).
doi: 10.1016/j.eururo.2017.03.013
pubmed: 28342640
Kato, M. et al. The presence of intraductal carcinoma of the prostate in needle biopsy is a significant prognostic factor for prostate cancer patients with distant metastasis at initial presentation. Mod. Pathol. 29, 166–173. https://doi.org/10.1038/modpathol.2015.146 (2016).
doi: 10.1038/modpathol.2015.146
pubmed: 26743470
Wei, Y. et al. Comparison of survival outcomes and risk factors between ductal carcinoma of the prostate and acinar adenocarcinoma of the prostate: A population-based propensity score-matching study. Eur. Urol. Open Sci. 46, 88–95. https://doi.org/10.1016/j.euros.2022.10.013 (2022).
doi: 10.1016/j.euros.2022.10.013
pubmed: 36506256
pmcid: 9732471
Fujimoto, A. et al. Tumor localization by Prostate Imaging and Reporting and Data System (PI-RADS) version 2.1 predicts prognosis of prostate cancer after radical prostatectomy. Sci. Rep. 13, 10079. https://doi.org/10.1038/s41598-023-36685-1 (2023).
doi: 10.1038/s41598-023-36685-1
pubmed: 37344491
pmcid: 10284848
Baba, H. et al. Tumor location and a tumor volume over 2.8 cc predict the prognosis for Japanese Localized Prostate Cancer. Cancers 14, 5823. https://doi.org/10.3390/cancers14235823 (2022).
doi: 10.3390/cancers14235823
pubmed: 36497304
pmcid: 9740872
Xu, N. et al. Risk factors for pathologically confirmed lymph nodes metastasis in patients with clinical t2n0m0 stage prostate cancer. Front. Oncol. 10, 1547. https://doi.org/10.3389/fonc.2020.01547 (2020).
doi: 10.3389/fonc.2020.01547
pubmed: 32923401
pmcid: 7456999
Kobayashi, H. et al. Genomic analysis of aggressive ductal adenocarcinoma of the prostate. Cancer Med. 12, 8445–8451. https://doi.org/10.1002/cam4.5573 (2023).
doi: 10.1002/cam4.5573
pubmed: 36573306
Pantazopoulos, H. et al. Intraductal carcinoma of the prostate as a cause of prostate cancer metastasis: A molecular portrait. Cancers 14, 820. https://doi.org/10.3390/cancers14030820 (2022).
doi: 10.3390/cancers14030820
pubmed: 35159086
pmcid: 8834356
Nicolosi, P. et al. Prevalence of germline variants in prostate cancer and implications for current genetic testing guidelines. JAMA Oncol. 5, 523–528. https://doi.org/10.1001/jamaoncol.2018.6760 (2019).
doi: 10.1001/jamaoncol.2018.6760
pubmed: 30730552
pmcid: 6459112
Ito, T. et al. PTEN loss in intraductal carcinoma of the prostate has low incidence in Japanese patients. Pathol. Int. 73, 542–548. https://doi.org/10.1111/pin.13369 (2023).
doi: 10.1111/pin.13369
pubmed: 37608749
Wagaskar, V. G. et al. Clinical utility of negative multiparametric magnetic resonance imaging in the diagnosis of prostate cancer and clinically significant prostate cancer. Eur. Urol. Open Science 28, 9–16. https://doi.org/10.1016/j.euros.2021.03.008 (2021).
doi: 10.1016/j.euros.2021.03.008
Oishi, M. et al. Which patients with negative magnetic resonance imaging can safely avoid biopsy for prostate cancer?. J. Urol. 201, 268–276. https://doi.org/10.1016/j.juro.2018.08.046 (2019).
doi: 10.1016/j.juro.2018.08.046
pubmed: 30189186
pmcid: 6677264
Wagaskar, V. G., Zaytoun, O., Bhardwaj, S. & Tewari, A. Stealth prostate tumors. Cancers 15, 3487. https://doi.org/10.3390/cancers15133487 (2023).
doi: 10.3390/cancers15133487
pubmed: 37444597
pmcid: 10341057
Pahouja, G. et al. The rising incidence of ductal adenocarcinoma and intraductal carcinoma of the prostate: Diagnostic accuracy of biopsy, MRI-visibility, and outcomes. Urol. Oncol. 41(48), e11-48.e18. https://doi.org/10.1016/j.urolonc.2022.09.025 (2023).
doi: 10.1016/j.urolonc.2022.09.025
Takeshita, N. et al. Detection of intraductal carcinoma in prostate cancer patients with small tumor volume. The Prostate https://doi.org/10.1002/pros.24492 (2023).
doi: 10.1002/pros.24492
pubmed: 36762419
Scher, H. I. et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: Recommendations of the Prostate Cancer Clinical Trials Working Group. J. Clin. Oncol. 26, 1148–1159. https://doi.org/10.1200/jco.2007.12.4487 (2008).
doi: 10.1200/jco.2007.12.4487
pubmed: 18309951
Barrett, T., Rajesh, A., Rosenkrantz, A. B., Choyke, P. L. & Turkbey, B. PI-RADS version 2.1: One small step for prostate MRI. Clin. Radiol. 74, 841–852. https://doi.org/10.1016/j.crad.2019.05.019 (2019).
doi: 10.1016/j.crad.2019.05.019
pubmed: 31239107