Fine-scale maps of malaria incidence to inform risk stratification in Laos.
Journal
Malaria journal
ISSN: 1475-2875
Titre abrégé: Malar J
Pays: England
ID NLM: 101139802
Informations de publication
Date de publication:
25 Jun 2024
25 Jun 2024
Historique:
received:
23
01
2024
accepted:
01
06
2024
medline:
26
6
2024
pubmed:
26
6
2024
entrez:
25
6
2024
Statut:
epublish
Résumé
Malaria risk maps are crucial for controlling and eliminating malaria by identifying areas of varying transmission risk. In the Greater Mekong Subregion, these maps guide interventions and resource allocation. This article focuses on analysing changes in malaria transmission and developing fine-scale risk maps using five years of routine surveillance data in Laos (2017-2021). The study employed data from 1160 geolocated health facilities in Laos, along with high-resolution environmental data. A Bayesian geostatistical framework incorporating population data and treatment-seeking propensity was developed. The models incorporated static and dynamic factors and accounted for spatial heterogeneity. Results showed a significant decline in malaria cases in Laos over the five-year period and a shift in transmission patterns. While the north became malaria-free, the south experienced ongoing transmission with sporadic outbreaks. The risk maps provided insights into changing transmission patterns and supported risk stratification. These risk maps are valuable tools for malaria control in Laos, aiding resource allocation, identifying intervention gaps, and raising public awareness. The study enhances understanding of malaria transmission dynamics and facilitates evidence-based decision-making for targeted interventions in high-risk areas.
Sections du résumé
BACKGROUND
BACKGROUND
Malaria risk maps are crucial for controlling and eliminating malaria by identifying areas of varying transmission risk. In the Greater Mekong Subregion, these maps guide interventions and resource allocation. This article focuses on analysing changes in malaria transmission and developing fine-scale risk maps using five years of routine surveillance data in Laos (2017-2021). The study employed data from 1160 geolocated health facilities in Laos, along with high-resolution environmental data.
METHODS
METHODS
A Bayesian geostatistical framework incorporating population data and treatment-seeking propensity was developed. The models incorporated static and dynamic factors and accounted for spatial heterogeneity.
RESULTS
RESULTS
Results showed a significant decline in malaria cases in Laos over the five-year period and a shift in transmission patterns. While the north became malaria-free, the south experienced ongoing transmission with sporadic outbreaks.
CONCLUSION
CONCLUSIONS
The risk maps provided insights into changing transmission patterns and supported risk stratification. These risk maps are valuable tools for malaria control in Laos, aiding resource allocation, identifying intervention gaps, and raising public awareness. The study enhances understanding of malaria transmission dynamics and facilitates evidence-based decision-making for targeted interventions in high-risk areas.
Identifiants
pubmed: 38918779
doi: 10.1186/s12936-024-05007-9
pii: 10.1186/s12936-024-05007-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
196Subventions
Organisme : Clinton Health Access Initiative
ID : BMGFMELIM4
Informations de copyright
© 2024. The Author(s).
Références
WHO. The Mekong Malaria Elimination Programme. Accelerating malaria elimination in the Greater Mekong, Bulletin 10. Geneva: World Health Organization; 2022. https://www.who.int/publications/i/item/WHO-UCN-GMP-MME-2022.01 . Accessed 30 Apr 2024.
WHO. Status report on artemisinin and ACT resistance. Geneva: World Health Organization; 2017.
Imwong M, Dhorda M, Tun KM, Thu AM, Phyo AP, Proux S, et al. Molecular epidemiology of resistance to antimalarial drugs in the Greater Mekong subregion: an observational study. Lancet Infect Dis. 2020;20(12):1470–80.
pubmed: 32679084
pmcid: 7689289
doi: 10.1016/S1473-3099(20)30228-0
Souris M, Marcombe S, Laforet J, Brey PT, Corbel V, Overgaard HJ. Modeling spatial variation in risk of presence and insecticide resistance for malaria vectors in Laos. PLoS ONE. 2017;12(5): e0177274.
pubmed: 28494013
pmcid: 5426714
doi: 10.1371/journal.pone.0177274
Ong KIC, Khattignavong P, Keomalaphet S, Iwagami M, Brey P, Kano S, et al. Health-seeking behaviours in a malaria endemic district in Lao People’s Democratic Republic: a mixed methods study. BMJ Open. 2021;11(12): e055350.
pubmed: 34903551
pmcid: 8671991
doi: 10.1136/bmjopen-2021-055350
Lek D, Gopinath D, Ek S, Heng S, Bun S, Say C, et al. Assessment of net lending strategy to better reach mobile and migrant populations in malaria endemic areas of Cambodia. Infect Dis Poverty. 2018;7(1):1–3.
doi: 10.1186/s40249-018-0489-1
Lao PDR Ministry of Health. National strategic plan for malaria control and elimination 2016 –2020. Ministry of Health, Lao People’s Democratic Republic. 2016. https://www2.malariafreemekong.org/wp-content/uploads/2019/03/Laos_Malaria-NSP.pdf .
WHO. World malaria report 2022. Geneva: World Health Organization; 2022.
Byrne I, Cramer E, Nelli L, Rerolle F, Wu L, Patterson C, et al. Characterizing the spatial distribution of multiple malaria diagnostic endpoints in a low-transmission setting in Lao PDR. Front Med. 2022;9:929366.
doi: 10.3389/fmed.2022.929366
WHO. Global technical strategy for malaria 2016–2030. Geneva: World Health Organization; 2021.
Hay SI, Snow RW. The Malaria Atlas Project: developing global maps of malaria risk. PLoS Med. 2006;3(12): e473.
pubmed: 17147467
pmcid: 1762059
doi: 10.1371/journal.pmed.0030473
Cohen JM, Le Menach A, Pothin E, Eisele TP, Gething PW, Eckhoff PA, et al. Mapping multiple components of malaria risk for improved targeting of elimination interventions. Malar J. 2017;16:1–12.
doi: 10.1186/s12936-017-2106-3
Cameron E, Young AJ, Twohig KA, Pothin E, Bhavnani D, Dismer A, et al. Mapping the endemicity and seasonality of clinical malaria for intervention targeting in Haiti using routine case data. eLife. 2021;10: e62122.
pubmed: 34058123
pmcid: 8169118
doi: 10.7554/eLife.62122
Zhao X, Thanapongtharm W, Lawawirojwong S, Wei C, Tang Y, Zhou Y, et al. Malaria risk map using spatial multi-criteria decision analysis along Yunnan border during the pre-elimination period. Am J Trop Med Hyg. 2020;103(2):793.
pubmed: 32602435
pmcid: 7410425
doi: 10.4269/ajtmh.19-0854
Adhikari B, Pell C, Phommasone K, Soundala X, Kommarasy P, Pongvongsa T, et al. Elements of effective community engagement: lessons from a targeted malaria elimination study in Lao PDR (Laos). Glob Health Action. 2017;10(1):1366136.
pubmed: 28914184
pmcid: 5645700
doi: 10.1080/16549716.2017.1366136
Smithuis FM, Kyaw MK, Phe UO, van der Broek I, Katterman N, Rogers C, et al. The effect of insecticide-treated bed nets on the incidence and prevalence of malaria in children in an area of unstable seasonal transmission in western Myanmar. Malar J. 2013;12(1):1–15.
doi: 10.1186/1475-2875-12-363
Vilay P, Dunn JC, Sichanthongthip O, Reyburn R, Butphomvihane P, Phiphakavong V, et al. Malaria risk stratification in Lao PDR guides program planning in an elimination setting. Sci Rep. 2024;14(1):1709.
pubmed: 38243065
pmcid: 10799062
doi: 10.1038/s41598-024-52115-2
Alegana VA, Wright JA, Pentrina U, Noor AM, Snow RW, Atkinson PM. Spatial modelling of healthcare utilisation for treatment of fever in Namibia. Int J Health Geogr. 2012;11(1):1–13.
doi: 10.1186/1476-072X-11-6
Arambepola R, Keddie SH, Collins EL, Twohig KA, Amratia P, Bertozzi-Villa A, et al. Spatiotemporal mapping of malaria prevalence in Madagascar using routine surveillance and health survey data. Sci Rep. 2020;10(1):18129.
pubmed: 33093622
pmcid: 7581764
doi: 10.1038/s41598-020-75189-0
Weiss D, Nelson A, Vargas-Ruiz C, Gligorić K, Bavadekar S, Gabrilovich E, et al. Global maps of travel time to healthcare facilities. Nat Med. 2020;26(12):1835–8.
pubmed: 32989313
doi: 10.1038/s41591-020-1059-1
Lao Statistics Bureau. Lao social indicator survey II 2017, survey findings report. Vientiane: Lao Statistics Bureau and UNICEF; 2018.
Weiss DJ, Mappin B, Dalrymple U, Bhatt S, Cameron E, Hay SI, et al. Re-examining environmental correlates of Plasmodium falciparum malaria endemicity: a data-intensive variable selection approach. Malar J. 2015;14:1–18.
doi: 10.1186/s12936-015-0574-x
Weiss DJ, Nelson A, Gibson H, Temperley W, Peedell S, Lieber A, et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature. 2018;553(7688):333–6.
pubmed: 29320477
doi: 10.1038/nature25181
Trabucco A, Zomer R. Global aridity index (global-aridity) and global potential evapo-transpiration (Global-PET) geospatial database. CGIAR-CSI GeoPortal; 2009.
Lehner B, Döll P. Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol. 2004;296(1–4):1–22.
doi: 10.1016/j.jhydrol.2004.03.028
Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, et al. The shuttle radar topography mission. Rev Geophys. 2007. https://doi.org/10.1029/2005RG000183 .
doi: 10.1029/2005RG000183
Gething PW, Van Boeckel TP, Smith DL, Guerra CA, Patil AP, Snow RW, et al. Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasit Vectors. 2011;4:1–11.
doi: 10.1186/1756-3305-4-92
Funk CC, Peterson PJ, Landsfeld MF, Pedreros DH, Verdin JP, Rowland JD, et al. A quasi-global precipitation time series for drought monitoring. US Geol Surv Data Ser. 2014;832(4):1–12.
Huete A, Justice C, Van Leeuwen W. MODIS vegetation index (MOD13). Algorithm Theor Basis Doc. 1999;3(213):295–309.
Wan Z, Zhang Y, Zhang Q, Li ZL. Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sens Environ. 2002;83(1–2):163–80.
doi: 10.1016/S0034-4257(02)00093-7
Kauth RJ, Thomas G. The tasselled cap–a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. In: LARS Symposia; 1976. p. 159.
Kristensen K, Nielsen A, Berg CW, Skaug H, Bell BM. TMB: automatic differentiation and Laplace approximation. J Stat Softw. 2016;70(5):1–21.
doi: 10.18637/jss.v070.i05
Lindgren F, Rue H. Bayesian spatial modelling with R-INLA. J Stat Softw. 2015;63:1–25.
doi: 10.18637/jss.v063.i19
Marcombe S, Maithaviphet S, Bobichon J, Phommavan N, Nambanya S, Corbel V, et al. New insights into malaria vector bionomics in Lao PDR: a nationwide entomology survey. Malar J. 2020;19:1–17.
doi: 10.1186/s12936-020-03453-9
Jorgensen P, Nambanya S, Gopinath D, Hongvanthong B, Luangphengsouk K, Bell D, et al. High heterogeneity in Plasmodium falciparum risk illustrates the need for detailed mapping to guide resource allocation: a new malaria risk map of the Lao People’s Democratic Republic. Malar J. 2010;9(1):1–10.
doi: 10.1186/1475-2875-9-59
Zhang C, Sorchampa S, Zhou H, Jiang J, Yang R, Zhang Y. Survey of asymptomatic malaria and mosquito vectors in Muang Khua District of Phongsaly Province, China-Laos Border. Int J Infect Dis. 2020;96:141–7.
pubmed: 32251803
doi: 10.1016/j.ijid.2020.03.066
Rerolle F, Dantzer E, Lover AA, Marshall JM, Hongvanthong B, Sturrock HJ, et al. Spatio-temporal associations between deforestation and malaria incidence in Lao PDR. eLife. 2021;10: e56974.
pubmed: 33686939
pmcid: 8024023
doi: 10.7554/eLife.56974
Liu M, Liu Y, Po L, Xia S, Huy R, Zhou XN, et al. Assessing the spatiotemporal malaria transmission intensity with heterogeneous risk factors: a modeling study in Cambodia. Infect Dis Model. 2023;8(1):253–69.
pubmed: 36844760
pmcid: 9944205
Wangdi K, Canavati SE, Ngo TD, Nguyen TM, Tran LK, Kelly GC, et al. Spatial and temporal patterns of malaria in Phu Yen Province, Vietnam, from 2005 to 2016. Am J Trop Med Hyg. 2020;103(4):1540.
pubmed: 32748781
pmcid: 7543816
doi: 10.4269/ajtmh.20-0392
Bisanzio D, Sudathip P, Kitchakarn S, Kanjanasuwan J, Gopinath D, Pinyajeerapat N, et al. Malaria stratification mapping in Thailand to support prevention of reestablishment. Am J Trop Med Hyg. 2024;110(1):79.
pubmed: 38081047
doi: 10.4269/ajtmh.23-0595
WHO. Eliminating malaria in Lao PDR: 460 000 to 2300 cases in 25 years. Geneva: World Health Organization; 2023. https://www.who.int/laos/news/spotlights/460000-to-2300-eliminating-malaria-in-lao-pdr . Accessed 25 Sept 2023.
WHO. Strategy for malaria elimination in the Greater Mekong Subregion: 2015-2030. WHO Regional Office for the Western Pacific; 2015.
Shirayama Y, Phompida S, Shibuya K. Geographic information system (GIS) maps and malaria control monitoring: intervention coverage and health outcome in distal villages of Khammouane province, Laos. Malar J. 2009;8:1–8.
doi: 10.1186/1475-2875-8-217
Williams YA, Tusting LS, Hocini S, Graves PM, Killeen GF, Kleinschmidt I, et al. Expanding the vector control toolbox for malaria elimination: a systematic review of the evidence. Adv Parasitol. 2018;99:345–79.
pubmed: 29530309
doi: 10.1016/bs.apar.2018.01.003
Cao J, Sturrock HJ, Cotter C, Zhou S, Zhou H, Liu Y, et al. Communicating and monitoring surveillance and response activities for malaria elimination: China’s “1-3-7’’ strategy. PLoS Med. 2014;11(5): e1001642.
pubmed: 24824170
pmcid: 4019513
doi: 10.1371/journal.pmed.1001642
Pongvongsa T, Ha H, Thanh L, Marchand RP, Nonaka D, Tojo B, et al. Joint malaria surveys lead towards improved cross-border cooperation between Savannakhet province, Laos and Quang Tri province, Vietnam. Malar J. 2012;11(1):1–15.
doi: 10.1186/1475-2875-11-262
Adhikari B, Phommasone K, Pongvongsa T, Soundala X, Koummarasy P, Henriques G, et al. Perceptions of asymptomatic malaria infection and their implications for malaria control and elimination in Laos. PLoS ONE. 2018;13(12): e0208912.
pubmed: 30533024
pmcid: 6289463
doi: 10.1371/journal.pone.0208912
Hoffman-Hall A, Puett R, Silva JA, Chen D, Bredder A, Shevade V, et al. Comparison of deforestation and forest land use factors for malaria elimination in Myanmar. IJID Reg. 2023;8:75–83.
pubmed: 37533552
pmcid: 10393544
doi: 10.1016/j.ijregi.2023.06.006
Matsumoto-Takahashi ELA, Iwagami M, Oyoshi K, Sasaki Y, Hongvanthong B, Kano S. Deforestation inhibits malaria transmission in Lao PDR: a spatial epidemiology using Earth observation satellites. TM & IH. 2023;51(1):60.
WHO. Mekong malaria elimination: epidemiology summary, volume 22, April–June 2023. Mekong Malaria Elimination Programme; 2023. https://www.who.int/laos/publications-detail/WHO-UCN-GMP-MME-2023.04 . Accessed 30 Apr 2024.
Adhikari B, Phommasone K, Pongvongsa T, Koummarasy P, Soundala X, Henriques G, et al. Treatment-seeking behaviour for febrile illnesses and its implications for malaria control and elimination in Savannakhet Province, Lao PDR (Laos): a mixed method study. BMC Health Serv Res. 2019;19(1):1–16.
doi: 10.1186/s12913-019-4070-9
Hilbe JM. Negative Binomial Regression. Cambridge University Press; 2011.
Cressie N, Wikle CK. Statistics for spatio-temporal data. Hoboken: John Wiley & Sons, Inc.; 2015.
Adin A, Martínez-Beneito M, Botella-Rocamora P, Goicoa T, Ugarte M. Smoothing and high risk areas detection in space-time disease mapping: a comparison of P-splines, autoregressive, and moving average models. Stoch Env Res Risk A. 2017;31:403–15.
doi: 10.1007/s00477-016-1269-8