Imaging cholangiocarcinoma: CT and MRI techniques.
CT
Cholangiocarcinoma
MRI
Technique
Journal
Abdominal radiology (New York)
ISSN: 2366-0058
Titre abrégé: Abdom Radiol (NY)
Pays: United States
ID NLM: 101674571
Informations de publication
Date de publication:
25 Jun 2024
25 Jun 2024
Historique:
received:
16
09
2023
accepted:
17
01
2024
revised:
10
01
2024
medline:
25
6
2024
pubmed:
25
6
2024
entrez:
25
6
2024
Statut:
aheadofprint
Résumé
Cross-sectional imaging plays a crucial role in the detection, diagnosis, staging, and resectability assessment of intra- and extrahepatic cholangiocarcinoma. Despite this vital function, there is a lack of standardized CT and MRI protocol recommendations for imaging cholangiocarcinoma, with substantial differences in image acquisition across institutions and vendor platforms. In this review, we present standardized strategies for the optimal imaging assessment of cholangiocarcinoma including contrast media considerations, patient preparation recommendations, optimal contrast timing, and representative CT and MRI protocols with individual sequence optimization recommendations. Our recommendations are supported by expert opinion from members of the Society of Abdominal Radiology's Disease-Focused Panel (DFP) on Cholangiocarcinoma, encompassing a broad array of institutions and practice patterns.
Identifiants
pubmed: 38916614
doi: 10.1007/s00261-024-04216-9
pii: 10.1007/s00261-024-04216-9
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C, Calvisi DF, Perugorria MJ, Fabris L, Boulter L, Macias RIR, Gaudio E, Alvaro D, Gradilone SA, Strazzabosco M, Marzioni M, Coulouarn C, Fouassier L, Raggi C, Invernizzi P, Mertens JC, Moncsek A, Rizvi S, Heimbach J, Koerkamp BG, Bruix J, Forner A, Bridgewater J, Valle JW, Gores GJ. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 2020;17(9):557-588. https://doi.org/10.1038/s41575-020-0310-z
doi: 10.1038/s41575-020-0310-z
pubmed: 32606456
pmcid: 7447603
Joo I, Lee JM, Yoon JH. Imaging Diagnosis of Intrahepatic and Perihilar Cholangiocarcinoma: Recent Advances and Challenges. Radiology 2018;288(1):7-13. https://doi.org/10.1148/radiol.2018171187
doi: 10.1148/radiol.2018171187
pubmed: 29869969
Nakanuma Y, Sato Y, Harada K, Sasaki M, Xu J, Ikeda H. Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J Hepatol 2010;2(12):419-427. https://doi.org/10.4254/wjh.v2.i12.419
doi: 10.4254/wjh.v2.i12.419
pubmed: 21191517
pmcid: 3010511
Gupta A, Dixon E. Epidemiology and risk factors: intrahepatic cholangiocarcinoma. Hepatobiliary Surg Nutr 2017;6(2):101-104. https://doi.org/10.21037/hbsn.2017.01.02
doi: 10.21037/hbsn.2017.01.02
pubmed: 28503557
pmcid: 5411279
Chang KJ, Kamel IR, Macura KJ, Bluemke DA. 3.0-T MR imaging of the abdomen: comparison with 1.5 T. Radiographics 2008;28(7):1983–1998. https://doi.org/10.1148/rg.287075154
Merkle EM, Haugan PA, Thomas J, Jaffe TA, Gullotto C. 3.0- Versus 1.5-T MR cholangiography: a pilot study. AJR Am J Roentgenol 2006;186(2):516–521. https://doi.org/10.2214/ajr.04.1484
Cornfeld D, Weinreb J. Simple changes to 1.5-T MRI abdomen and pelvis protocols to optimize results at 3 T. AJR Am J Roentgenol 2008;190(2):W140–150. https://doi.org/10.2214/ajr.07.2903
Merkle EM, Dale BM. Abdominal MRI at 3.0 T: the basics revisited. AJR Am J Roentgenol 2006;186(6):1524–1532. https://doi.org/10.2214/ajr.05.0932
Gruber B, Froeling M, Leiner T, Klomp DWJ. RF coils: A practical guide for nonphysicists. J Magn Reson Imaging 2018;48(3):590-604. https://doi.org/10.1002/jmri.26187
doi: 10.1002/jmri.26187
pubmed: 29897651
pmcid: 6175221
Tsurusaki M, Sugimoto K, Fujii M, Sugimura K. Multi-detector row helical CT of the liver: quantitative assessment of iodine concentration of intravenous contrast material on multiphasic CT--a prospective randomized study. Radiat Med 2004;22(4):239-245.
pubmed: 15468944
Cademartiri F, de Monye C, Pugliese F, Mollet NR, Runza G, van der Lugt A, Midiri M, de Feyter PJ, Lagalla R, Krestin GP. High iodine concentration contrast material for noninvasive multislice computed tomography coronary angiography: iopromide 370 versus iomeprol 400. Invest Radiol 2006;41(3):349-353. https://doi.org/10.1097/01.rli.0000191369.76521.09
doi: 10.1097/01.rli.0000191369.76521.09
pubmed: 16481919
Furuta A, Ito K, Fujita T, Koike S, Shimizu A, Matsunaga N. Hepatic enhancement in multiphasic contrast-enhanced MDCT: comparison of high- and low-iodine-concentration contrast medium in same patients with chronic liver disease. AJR American journal of roentgenology 2004;183(1):157-162. https://doi.org/10.2214/ajr.183.1.1830157
doi: 10.2214/ajr.183.1.1830157
pubmed: 15208131
Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 2010;256(1):32-61. https://doi.org/10.1148/radiol.10090908
doi: 10.1148/radiol.10090908
pubmed: 20574084
Heiken JP, Brink JA, McClennan BL, Sagel SS, Crowe TM, Gaines MV. Dynamic incremental CT: effect of volume and concentration of contrast material and patient weight on hepatic enhancement. Radiology 1995;195(2):353-357. https://doi.org/10.1148/radiology.195.2.7724752
doi: 10.1148/radiology.195.2.7724752
pubmed: 7724752
Ichikawa T, Nakajima H, Nanbu A, Hori M, Araki T. Effect of injection rate of contrast material on CT of hepatocellular carcinoma. AJR American journal of roentgenology 2006;186(5):1413-1418. https://doi.org/10.2214/ajr.04.0310
doi: 10.2214/ajr.04.0310
pubmed: 16632738
Frydrychowicz A, Lubner MG, Brown JJ, Merkle EM, Nagle SK, Rofsky NM, Reeder SB. Hepatobiliary MR imaging with gadolinium-based contrast agents. J Magn Reson Imaging 2012;35(3):492-511. https://doi.org/10.1002/jmri.22833
doi: 10.1002/jmri.22833
pubmed: 22334493
pmcid: 3281562
Kang Y, Lee JM, Kim SH, Han JK, Choi BI. Intrahepatic mass-forming cholangiocarcinoma: enhancement patterns on gadoxetic acid-enhanced MR images. Radiology 2012;264(3):751-760. https://doi.org/10.1148/radiol.12112308
doi: 10.1148/radiol.12112308
pubmed: 22798225
Carlos RC, Hussain HK, Song JH, Francis IR. Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid as an intrabiliary contrast agent: preliminary assessment. AJR American journal of roentgenology 2002;179(1):87-92. https://doi.org/10.2214/ajr.179.1.1790087
doi: 10.2214/ajr.179.1.1790087
pubmed: 12076911
Hwang JA, Min JH, Kim SH, Choi SY, Lee JE, Moon JY. Total Bilirubin Level as a Predictor of Suboptimal Image Quality of the Hepatobiliary Phase of Gadoxetic Acid-Enhanced MRI in Patients with Extrahepatic Bile Duct Cancer. Korean J Radiol 2022;23(4):389-401. https://doi.org/10.3348/kjr.2021.0407
doi: 10.3348/kjr.2021.0407
pubmed: 35029076
pmcid: 8961017
Huang SY, Seethamraju RT, Patel P, Hahn PF, Kirsch JE, Guimaraes AR. Body MR Imaging: Artifacts, k-Space, and Solutions. Radiographics 2015;35(5):1439-1460. https://doi.org/10.1148/rg.2015140289
doi: 10.1148/rg.2015140289
pubmed: 26207581
Davenport MS, Viglianti BL, Al-Hawary MM, Caoili EM, Kaza RK, Liu PS, Maturen KE, Chenevert TL, Hussain HK. Comparison of acute transient dyspnea after intravenous administration of gadoxetate disodium and gadobenate dimeglumine: effect on arterial phase image quality. Radiology 2013;266(2):452-461. https://doi.org/10.1148/radiol.12120826
doi: 10.1148/radiol.12120826
pubmed: 23192781
Poetter-Lang S, Dovjak GO, Messner A, Ambros R, Polanec SH, Baltzer PAT, Kristic A, Herold A, Hodge JC, Weber M, Bastati N, Ba-Ssalamah A. Influence of dilution on arterial-phase artifacts and signal intensity on gadoxetic acid-enhanced liver MRI. Eur Radiol 2023;33(1):523-534. https://doi.org/10.1007/s00330-022-08984-0
doi: 10.1007/s00330-022-08984-0
pubmed: 35895119
Huh J, Kim SY, Yeh BM, Lee SS, Kim KW, Wu EH, Wang ZJ, Zhao LQ, Chang WC. Troubleshooting Arterial-Phase MR Images of Gadoxetate Disodium-Enhanced Liver. Korean J Radiol 2015;16(6):1207-1215. https://doi.org/10.3348/kjr.2015.16.6.1207
doi: 10.3348/kjr.2015.16.6.1207
pubmed: 26576109
pmcid: 4644741
Joo I, Lee JM, Lee SM, Lee JS, Park JY, Han JK. Diagnostic accuracy of liver imaging reporting and data system (LI-RADS) v2014 for intrahepatic mass-forming cholangiocarcinomas in patients with chronic liver disease on gadoxetic acid-enhanced MRI. J Magn Reson Imaging 2016;44(5):1330-1338. https://doi.org/10.1002/jmri.25287
doi: 10.1002/jmri.25287
pubmed: 27087012
Renzulli M, Biselli M, Fabbri E, Caretti D, Sergenti A, Modestino F, Giannone FA, Storchi M, Pierotti L, Golfieri R. What is the best fruit juice to use as a negative oral contrast agent in magnetic resonance cholangiopancreatography? Clin Radiol 2019;74(3):220-227. https://doi.org/10.1016/j.crad.2018.11.005
doi: 10.1016/j.crad.2018.11.005
pubmed: 30554806
Morita S, Ueno E, Masukawa A, Suzuki K, Fujimura M, Hirabayashi N, Kojima S, Hirata M, Kitajima K, Kaji Y. Prospective comparative study of negative oral contrast agents for magnetic resonance cholangiopancreatography. Jpn J Radiol 2010;28(2):117-122. https://doi.org/10.1007/s11604-009-0395-3
doi: 10.1007/s11604-009-0395-3
pubmed: 20182846
Riordan RD, Khonsari M, Jeffries J, Maskell GF, Cook PG. Pineapple juice as a negative oral contrast agent in magnetic resonance cholangiopancreatography: a preliminary evaluation. Br J Radiol 2004;77(924):991-999. https://doi.org/10.1259/bjr/36674326
doi: 10.1259/bjr/36674326
pubmed: 15569640
Chan JH, Tsui EY, Yuen MK, Szeto ML, Luk SH, Wong KP, Wong NO. Gadopentetate dimeglumine as an oral negative gastrointestinal contrast agent for MRCP. Abdom Imaging 2000;25(4):405-408. https://doi.org/10.1007/s002610000018
doi: 10.1007/s002610000018
pubmed: 10926195
Gong J, Zhao H, Liu T, Ling R, Xu J. Value of MRCP using oral Gd-DTPA as negative contrast materials in diagnosis of atypical juxtapapillary duodenal diverticulum. Clin Imaging 2009;33(5):361-364. https://doi.org/10.1016/j.clinimag.2009.05.006
doi: 10.1016/j.clinimag.2009.05.006
pubmed: 19712815
Reeder SB. Gadolinium-based contrast agents: what does "single-dose" mean anymore? J Magn Reson Imaging 2014;39(6):1343-1345. https://doi.org/10.1002/jmri.24352
doi: 10.1002/jmri.24352
pubmed: 24123335
Motosugi U, Ichikawa T, Sano K, Sou H, Onohara K, Muhi A, Kitamura T, Amemiya F, Enomoto N, Matsuda M, Asakawa M, Fujii H, Araki T. Double-dose gadoxetic Acid-enhanced magnetic resonance imaging in patients with chronic liver disease. Invest Radiol 2011;46(2):141-145. https://doi.org/10.1097/RLI.0b013e3181f9c487
doi: 10.1097/RLI.0b013e3181f9c487
pubmed: 21139506
Chung SH, Kim MJ, Choi JY, Hong HS. Comparison of two different injection rates of gadoxetic acid for arterial phase MRI of the liver. J Magn Reson Imaging 2010;31(2):365-372. https://doi.org/10.1002/jmri.22057
doi: 10.1002/jmri.22057
pubmed: 20099350
Chung YE, Kim MJ, Park YN, Choi JY, Pyo JY, Kim YC, Cho HJ, Kim KA, Choi SY. Varying appearances of cholangiocarcinoma: radiologic-pathologic correlation. Radiographics 2009;29(3):683-700. https://doi.org/10.1148/rg.293085729
doi: 10.1148/rg.293085729
pubmed: 19448110
Lacomis JM, Baron RL, Oliver JH, 3rd, Nalesnik MA, Federle MP. Cholangiocarcinoma: delayed CT contrast enhancement patterns. Radiology 1997;203(1):98-104. https://doi.org/10.1148/radiology.203.1.9122423
doi: 10.1148/radiology.203.1.9122423
pubmed: 9122423
Takayasu K, Ikeya S, Mukai K, Muramatsu Y, Makuuchi M, Hasegawa H. CT of hilar cholangiocarcinoma: late contrast enhancement in six patients. AJR Am J Roentgenol 1990;154(6):1203-1206. https://doi.org/10.2214/ajr.154.6.2159688
doi: 10.2214/ajr.154.6.2159688
pubmed: 2159688
Manfredi R, Barbaro B, Masselli G, Vecchioli A, Marano P. Magnetic resonance imaging of cholangiocarcinoma. Semin Liver Dis 2004;24(2):155-164. https://doi.org/10.1055/s-2004-828892
doi: 10.1055/s-2004-828892
pubmed: 15192788
American College of Radiology website. CT/MRI Liver Imaging Reporting and Data System version 2018. www.acr.org/Clinical-Resources/Reportingand-Data-Systems/LI-RADS/CT-MRI-LI-RADS-v2018 . Published 2018. Accessed April 2022
38. Min JH, Kim YK, Choi SY, Jeong WK, Lee WJ, Ha SY, Ahn S, Ahn HS. Differentiation between cholangiocarcinoma and hepatocellular carcinoma with target sign on diffusion-weighted imaging and hepatobiliary phase gadoxetic acid-enhanced MR imaging: Classification tree analysis applying capsule and septum. Eur J Radiol 2017;92:1-10. https://doi.org/10.1016/j.ejrad.2017.04.008
doi: 10.1016/j.ejrad.2017.04.008
pubmed: 28624005
39. Min JH, Kim YK, Choi SY, Kang TW, Lee SJ, Kim JM, Ahn S, Cho H. Intrahepatic Mass-forming Cholangiocarcinoma: Arterial Enhancement Patterns at MRI and Prognosis. Radiology 2019;290(3):691-699. https://doi.org/10.1148/radiol.2018181485
doi: 10.1148/radiol.2018181485
pubmed: 30620253
40. Keogan MT, Seabourn JT, Paulson EK, McDermott VG, Delong DM, Nelson RC. Contrast-enhanced CT of intrahepatic and hilar cholangiocarcinoma: delay time for optimal imaging. AJR Am J Roentgenol 1997;169(6):1493-1499. https://doi.org/10.2214/ajr.169.6.9393152
doi: 10.2214/ajr.169.6.9393152
pubmed: 9393152
41. Zhang Y, Uchida M, Abe T, Nishimura H, Hayabuchi N, Nakashima Y. Intrahepatic peripheral cholangiocarcinoma: comparison of dynamic CT and dynamic MRI. J Comput Assist Tomogr 1999;23(5):670-677. https://doi.org/10.1097/00004728-199909000-00004
doi: 10.1097/00004728-199909000-00004
pubmed: 10524843
42. Kim YK, Kim CS, Lee JM, Ko SW, Chung GH, Lee SO, Han YM, Lee SY. Value of adding T1-weighted image to MR cholangiopancreatography for detecting intrahepatic biliary stones. AJR Am J Roentgenol 2006;187(3):W267-274. https://doi.org/10.2214/ajr.05.0266
doi: 10.2214/ajr.05.0266
pubmed: 16928904
43. Mohammadinejad P, Mileto A, Yu L, Leng S, Guimaraes LS, Missert AD, Jensen CT, Gong H, McCollough CH, Fletcher JG. CT Noise-Reduction Methods for Lower-Dose Scanning: Strengths and Weaknesses of Iterative Reconstruction Algorithms and New Techniques. Radiographics 2021;41(5):1493-1508. https://doi.org/10.1148/rg.2021200196
doi: 10.1148/rg.2021200196
pubmed: 34469209
44. Shan H, Padole A, Homayounieh F, Kruger U, Khera RD, Nitiwarangkul C, Kalra MK, Wang G. Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nat Mach Intell 2019;1(6):269-276. https://doi.org/10.1038/s42256-019-0057-9
doi: 10.1038/s42256-019-0057-9
pubmed: 33244514
pmcid: 7687920
Gaspersz MP, Buettner S, van Vugt JLA, de Jonge J, Polak WG, Doukas M, Ijzermans JNM, Koerkamp BG, Willemssen F. Evaluation of the New American Joint Committee on Cancer Staging Manual 8th Edition for Perihilar Cholangiocarcinoma. J Gastrointest Surg 2020;24(7):1612–1618. https://doi.org/10.1007/s11605-019-04127-x
46. Irie H, Honda H, Kuroiwa T, Yoshimitsu K, Aibe H, Shinozaki K, Masuda K. Pitfalls in MR cholangiopancreatographic interpretation. Radiographics 2001;21(1):23-37. https://doi.org/10.1148/radiographics.21.1.g01ja0523
doi: 10.1148/radiographics.21.1.g01ja0523
pubmed: 11158641
47. Chen Z, Sun B, Duan Q, Xue Y, Zheng E, He Y, Li G. Three-Dimensional Breath-Hold MRCP Using SPACE Pulse Sequence at 3 T: Comparison With Conventional Navigator-Triggered Technique. AJR Am J Roentgenol 2019;213(6):1247-1252. https://doi.org/10.2214/ajr.19.21399
doi: 10.2214/ajr.19.21399
pubmed: 31386572
48. Yoon JH, Lee SM, Kang HJ, Weiland E, Raithel E, Son Y, Kiefer B, Lee JM. Clinical Feasibility of 3-Dimensional Magnetic Resonance Cholangiopancreatography Using Compressed Sensing: Comparison of Image Quality and Diagnostic Performance. Invest Radiol 2017;52(10):612-619. https://doi.org/10.1097/rli.0000000000000380
doi: 10.1097/rli.0000000000000380
pubmed: 28448309
49. Chandarana H, Doshi AM, Shanbhogue A, Babb JS, Bruno MT, Zhao T, Raithel E, Zenge MO, Li G, Otazo R. Three-dimensional MR Cholangiopancreatography in a Breath Hold with Sparsity-based Reconstruction of Highly Undersampled Data. Radiology 2016;280(2):585-594. https://doi.org/10.1148/radiol.2016151935
doi: 10.1148/radiol.2016151935
pubmed: 26982678
50. Zhu L, Wu X, Sun Z, Jin Z, Weiland E, Raithel E, Qian T, Xue H. Compressed-Sensing Accelerated 3-Dimensional Magnetic Resonance Cholangiopancreatography: Application in Suspected Pancreatic Diseases. Invest Radiol 2018;53(3):150-157. https://doi.org/10.1097/rli.0000000000000421
doi: 10.1097/rli.0000000000000421
pubmed: 28976478
51. Cui XY, Chen HW. Role of diffusion-weighted magnetic resonance imaging in the diagnosis of extrahepatic cholangiocarcinoma. World J Gastroenterol 2010;16(25):3196-3201. https://doi.org/10.3748/wjg.v16.i25.3196
doi: 10.3748/wjg.v16.i25.3196
pubmed: 20593506
pmcid: 2896758
52. Yu MH, Lee JM, Yoon JH, Kiefer B, Han JK, Choi BI. Clinical application of controlled aliasing in parallel imaging results in a higher acceleration (CAIPIRINHA)-volumetric interpolated breathhold (VIBE) sequence for gadoxetic acid-enhanced liver MR imaging. J Magn Reson Imaging 2013;38(5):1020-1026. https://doi.org/10.1002/jmri.24088
doi: 10.1002/jmri.24088
pubmed: 23559147
53. Ikram NS, Yee J, Weinstein S, Yeh BM, Corvera CU, Monto A, Hope TA. Multiple arterial phase MRI of arterial hypervascular hepatic lesions: improved arterial phase capture and lesion enhancement. Abdom Radiol (NY) 2017;42(3):870-876. https://doi.org/10.1007/s00261-016-0948-8
doi: 10.1007/s00261-016-0948-8
pubmed: 27770162
pmcid: 5357156
54. Lee NK, Kim S, Lee JW, Lee SH, Kang DH, Kim GH, Seo HI. Biliary MR imaging with Gd-EOB-DTPA and its clinical applications. Radiographics 2009;29(6):1707-1724. https://doi.org/10.1148/rg.296095501
doi: 10.1148/rg.296095501
pubmed: 19959517
55. Bashir MR, Breault SR, Braun R, Do RK, Nelson RC, Reeder SB. Optimal timing and diagnostic adequacy of hepatocyte phase imaging with gadoxetate-enhanced liver MRI. Acad Radiol 2014;21(6):726-732. https://doi.org/10.1016/j.acra.2014.02.005
doi: 10.1016/j.acra.2014.02.005
pubmed: 24717550
pmcid: 5614703
56. Tschirch FT, Struwe A, Petrowsky H, Kakales I, Marincek B, Weishaupt D. Contrast-enhanced MR cholangiography with Gd-EOB-DTPA in patients with liver cirrhosis: visualization of the biliary ducts in comparison with patients with normal liver parenchyma. Eur Radiol 2008;18(8):1577-1586. https://doi.org/10.1007/s00330-008-0929-6
doi: 10.1007/s00330-008-0929-6
pubmed: 18369632
57. Bashir MR, Merkle EM. Improved liver lesion conspicuity by increasing the flip angle during hepatocyte phase MR imaging. Eur Radiol 2011;21(2):291-294. https://doi.org/10.1007/s00330-010-1917-1
doi: 10.1007/s00330-010-1917-1
pubmed: 20686771
58. Stelter L, Freyhardt P, Grieser C, Walter T, Geisel D, Baur A, Seehofer D, Denecke T. An increased flip angle in late phase Gd-EOB-DTPA MRI shows improved performance in bile duct visualization compared to T2w-MRCP. Eur J Radiol 2014;83(10):1723-1727. https://doi.org/10.1016/j.ejrad.2014.06.005
doi: 10.1016/j.ejrad.2014.06.005
pubmed: 25022980
Kim S, Mussi TC, Lee LJ, Mausner EV, Cho KC, Rosenkrantz AB. Effect of flip angle for optimization of image quality of gadoxetate disodium-enhanced biliary imaging at 1.5 T. AJR Am J Roentgenol 2013;200(1):90–96. https://doi.org/10.2214/ajr.12.8722