Magnon interactions in a moderately correlated Mott insulator.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
24 Jun 2024
Historique:
received: 11 10 2023
accepted: 17 06 2024
medline: 25 6 2024
pubmed: 25 6 2024
entrez: 24 6 2024
Statut: epublish

Résumé

Quantum fluctuations in low-dimensional systems and near quantum phase transitions have significant influences on material properties. Yet, it is difficult to experimentally gauge the strength and importance of quantum fluctuations. Here we provide a resonant inelastic x-ray scattering study of magnon excitations in Mott insulating cuprates. From the thin film of SrCuO

Identifiants

pubmed: 38914556
doi: 10.1038/s41467-024-49714-y
pii: 10.1038/s41467-024-49714-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5348

Subventions

Organisme : Chinese University of Hong Kong (CUHK)
ID : Direct Grant 4053613

Informations de copyright

© 2024. The Author(s).

Références

Jiang, H.-C. & Devereaux, T. P. Superconductivity in the doped hubbard model and its interplay with next-nearest hopping [Formula: see text]. Science 365, 1424 (2019).
pubmed: 31604270 doi: 10.1126/science.aal5304
Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998).
doi: 10.1103/RevModPhys.70.1039
Harter, J. W. et al. Nodeless superconducting phase arising from a strong (π, π) antiferromagnetic phase in the infinite-layer electron-doped Sr
pubmed: 23368603 doi: 10.1103/PhysRevLett.109.267001
Harter, J. W. et al. Doping evolution and polar surface reconstruction of the infinite-layer cuprate Sr
doi: 10.1103/PhysRevB.92.035149
Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17 (2006).
doi: 10.1103/RevModPhys.78.17
Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).
doi: 10.1103/RevModPhys.89.025003
Anderson, P. W. An approximate quantum theory of the antiferromagnetic ground state. Phys. Rev. 86, 694 (1952).
doi: 10.1103/PhysRev.86.694
Oguchi, T. Theory of spin-wave interactions in ferro- and antiferromagnetism. Phys. Rev. 117, 117 (1960).
doi: 10.1103/PhysRev.117.117
Braicovich, L. et al. Magnetic excitations and phase separation in the underdoped La
pubmed: 20366909 doi: 10.1103/PhysRevLett.104.077002
Singh, R. R. P. Thermodynamic parameters of the T=0, spin-1/2 square-lattice Heisenberg antiferromagnet. Phys. Rev. B 39, 9760 (1989).
doi: 10.1103/PhysRevB.39.9760
Canali, C. M., Girvin, S. M. & Wallin, M. Spin-wave velocity renormalization in the two-dimensional Heisenberg antiferromagnet at zero temperature. Phys. Rev. B 45, 10131 (1992).
doi: 10.1103/PhysRevB.45.10131
Coldea, R. et al. Spin waves and electronic interactions in La
pubmed: 11384502 doi: 10.1103/PhysRevLett.86.5377
Katanin, A. A. & Kampf, A. P. Theoretical analysis of magnetic Raman scattering in La
doi: 10.1103/PhysRevB.67.100404
Headings, N. S., Hayden, S. M., Coldea, R. & Perring, T. G. Anomalous high-energy spin excitations in the high-T
pubmed: 21231553 doi: 10.1103/PhysRevLett.105.247001
Christensen, N. B. et al. Quantum dynamics and entanglement of spins on a square lattice. Proc. Natl Acad. Sci. USA 104, 15264 (2007).
pubmed: 17884986 pmcid: 2000527 doi: 10.1073/pnas.0703293104
Ivashko, O. et al. Strain-engineering Mott-insulating La
pubmed: 30783084 pmcid: 6381167 doi: 10.1038/s41467-019-08664-6
Peng, Y. Y. et al. Influence of apical oxygen on the extent of in-plane exchange interaction in cuprate superconductors. Nat. Phys. 13, 1201 (2017).
doi: 10.1038/nphys4248
Martinelli, L. et al. Fractional spin excitations in the infinite-layer cuprate CaCuO
Piazza, B. D. et al. Fractional excitations in the square-lattice quantum antiferromagnet. Nat. Phys. 11, 62 (2014).
doi: 10.1038/nphys3172
Dantz, M. et al. Quenched magnon excitations by oxygen sublattice reconstruction in (SrCuO2)n/(SrTiO3)2 superlattices. Sci. Rep. 6, 32896 (2016).
pubmed: 27616448 pmcid: 5018731 doi: 10.1038/srep32896
Moretti Sala, M. et al. Energy and symmetry of dd excitations in undoped layered cuprates measured by Cu L
doi: 10.1088/1367-2630/13/4/043026
Martinelli, L. et al. Collective nature of orbital excitations in layered cuprates in the absence of apical oxygens. Phys. Rev. Lett. 132, 066004 (2024).
pubmed: 38394564 doi: 10.1103/PhysRevLett.132.066004
Ament, L. J. P., van Veenendaal, M., Devereaux, T. P., Hill, J. P. & van den Brink, J. Resonant inelastic x-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83, 705 (2011).
doi: 10.1103/RevModPhys.83.705
Braicovich, L. et al. Dispersion of magnetic excitations in the cuprate La
pubmed: 19518752 doi: 10.1103/PhysRevLett.102.167401
Bisogni, V. et al. Bimagnon studies in cuprates with resonant inelastic x-ray scattering at the O K edge. I. Assessment on La
doi: 10.1103/PhysRevB.85.214527
Chaix, L. et al. Resonant inelastic x-ray scattering studies of magnons and bimagnons in the lightly doped cuprate La
doi: 10.1103/PhysRevB.97.155144
Wang, Q. et al. Charge order lock-in by electron-phonon coupling in La
pubmed: 34193430 pmcid: 8245032 doi: 10.1126/sciadv.abg7394
von Arx, K. et al. Fate of charge order in overdoped La-based cuprates. npj Quantum Mater. 8, 7 (2023).
doi: 10.1038/s41535-023-00539-w
Delannoy, J.-Y. P., Gingras, M. J. P., Holdsworth, P. C. W. & Tremblay, A.-M. S. Low-energy theory of the [Formula: see text] Hubbard model at half-filling: interaction strengths in cuprate superconductors and an effective spin-only description of La
doi: 10.1103/PhysRevB.79.235130
Dalla Piazza, B. et al. Unified one-band Hubbard model for magnetic and electronic spectra of the parent compounds of cuprate superconductors. Phys. Rev. B 85, 100508 (2012).
doi: 10.1103/PhysRevB.85.100508
Ivashko, O. et al. Damped spin excitations in a doped cuprate superconductor with orbital hybridization. Phys. Rev. B 95, 214508 (2017).
doi: 10.1103/PhysRevB.95.214508
Sakakibara, H., Usui, H., Kuroki, K., Arita, R. & Aoki, H. Two-orbital model explains the higher transition temperature of the single-layer Hg-cuprate superconductor compared to that of the La-cuprate superconductor. Phys. Rev. Lett. 105, 057003 (2010).
pubmed: 20867949 doi: 10.1103/PhysRevLett.105.057003
Matt, C. E. et al. Direct observation of orbital hybridisation in a cuprate superconductor. Nat. Commun. 9, 972 (2018).
pubmed: 29511188 pmcid: 5840306 doi: 10.1038/s41467-018-03266-0
Weber, C., Haule, K. & Kotliar, G. Strength of correlations in electron- and hole-doped cuprates. Nat. Phys. 6, 574 (2010).
doi: 10.1038/nphys1706
Jang, S. W. et al. Direct theoretical evidence for weaker correlations in electron-doped and Hg-based hole-doped cuprates. Sci. Rep. 6, 33397 (2016).
pubmed: 27633802 pmcid: 5025755 doi: 10.1038/srep33397
Biało, I. et al. Strain-tuned magnetic frustration in a square lattice J
Zheng, B.-X. et al. Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358, 1155–1160 (2017).
pubmed: 29191901 doi: 10.1126/science.aam7127
Bonetti, P. M., Mitscherling, J., Vilardi, D. & Metzner, W. Charge carrier drop at the onset of pseudogap behavior in the two-dimensional Hubbard model. Phys. Rev. B 101, 165142 (2020).
doi: 10.1103/PhysRevB.101.165142
Scholle, R., Bonetti, P. M., Vilardi, D. & Metzner, W. Comprehensive mean-field analysis of magnetic and charge orders in the two-dimensional Hubbard model. Phys. Rev. B 108, 035139 (2023).
doi: 10.1103/PhysRevB.108.035139
Xiao, B., He, Y.-Y., Georges, A. & Zhang, S. Temperature dependence of spin and charge orders in the doped two-dimensional Hubbard model. Phys. Rev. X 13, 011007 (2023).
Simkovic, F., Rossi, R., Georges, A. & Ferrero, M., Origin and fate of the pseudogap in the doped Hubbard model. Preprint at https://arxiv.org/abs/2209.09237 (2022).
Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561 (1995).
doi: 10.1038/375561a0
Berg, E., Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Striped superconductors: how spin, charge and superconducting orders intertwine in the cuprates. New J. Phys. 11, 115004 (2009).
doi: 10.1088/1367-2630/11/11/115004
Simutis, G. et al. Single-domain stripe order in a high-temperature superconductor. Commun. Phys. 5, 296 (2022).
doi: 10.1038/s42005-022-01061-4
Rohringer, G. et al. Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory. Rev. Mod. Phys. 90, 025003 (2018).
doi: 10.1103/RevModPhys.90.025003
Park, H., Haule, K. & Kotliar, G. Magnetic excitation spectra in BaFe
pubmed: 22026896 doi: 10.1103/PhysRevLett.107.137007
Stepanov, E. A. et al. Quantum spin fluctuations and evolution of electronic structure in cuprates. npj Quantum Mater. 3, 54 (2018).
doi: 10.1038/s41535-018-0128-x
Acharya, S. et al. Evening out the spin and charge parity to increase T
doi: 10.1038/s42005-019-0254-1
Boehnke, L., Werner, P. & Lechermann, F. Multi-orbital nature of the spin fluctuations in Sr
doi: 10.1209/0295-5075/122/57001
Maritato, L. et al. Layer-by-layer shuttered molecular-beam epitaxial growth of superconducting Sr
doi: 10.1063/1.4790150
Strocov, V. N. et al. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies. J. Synchrotron Radiat. 17, 631 (2010).
pubmed: 20724785 pmcid: 2927903 doi: 10.1107/S0909049510019862
Ghiringhelli, G. et al. SAXES, a high resolution spectrometer for resonant x-ray emission in the 400-1600 eV energy range. Rev. Sci. Instrum. 77, 113108 (2006).
doi: 10.1063/1.2372731
Wang, Q. et al. High-temperature charge-stripe correlations in La
pubmed: 32441965 doi: 10.1103/PhysRevLett.124.187002
Yoshida, T. et al. Systematic doping evolution of the underlying Fermi surface of La
doi: 10.1103/PhysRevB.74.224510
Zhong, Y. et al. Differentiated roles of Lifshitz transition on thermodynamics and superconductivity in La
pubmed: 35914123 pmcid: 9371668 doi: 10.1073/pnas.2204630119

Auteurs

Qisi Wang (Q)

Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China. qwang@cuhk.edu.hk.
Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland. qwang@cuhk.edu.hk.

S Mustafi (S)

Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.

E Fogh (E)

Institute of Physics, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.

N Astrakhantsev (N)

Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.

Z He (Z)

Institute of High Energy Physics, Chinese Academy of Sciences (CAS), 100049, Beijing, China.
Spallation Neutron Source Science Center (SNSSC), Dongguan, 523803, China.

I Biało (I)

Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
AGH University of Krakow, Faculty of Physics and Applied Computer Science, 30-059, Krakow, Poland.

Ying Chan (Y)

Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.

L Martinelli (L)

Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.

M Horio (M)

Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.

O Ivashko (O)

Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.

N E Shaik (NE)

Institute of Physics, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.

K von Arx (KV)

Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.

Y Sassa (Y)

Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden.

E Paris (E)

Swiss Light Source, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland.

M H Fischer (MH)

Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.

Y Tseng (Y)

Swiss Light Source, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland.

N B Christensen (NB)

Department of Physics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.

A Galdi (A)

Dipartimento di Ingegneria Industriale, Universita' degli Studi di Salerno, 84084, Fisciano, SA, Italy.
Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14850, USA.

D G Schlom (DG)

Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14850, USA.
Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA.

K M Shen (KM)

Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA.
Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, 14853, USA.

T Schmitt (T)

Swiss Light Source, Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland.

H M Rønnow (HM)

Institute of Physics, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.

J Chang (J)

Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland. johan.chang@physik.uzh.ch.

Classifications MeSH