Physicochemical modelling of the retention mechanism of temperature-responsive polymeric columns for HPLC through machine learning algorithms.

Machine learning Molecular descriptors Retention mechanism Temperature-responsive liquid chromatography

Journal

Journal of cheminformatics
ISSN: 1758-2946
Titre abrégé: J Cheminform
Pays: England
ID NLM: 101516718

Informations de publication

Date de publication:
21 Jun 2024
Historique:
received: 14 08 2023
accepted: 14 06 2024
medline: 22 6 2024
pubmed: 22 6 2024
entrez: 21 6 2024
Statut: epublish

Résumé

Temperature-responsive liquid chromatography (TRLC) offers a promising alternative to reversed-phase liquid chromatography (RPLC) for environmentally friendly analytical techniques by utilizing pure water as a mobile phase, eliminating the need for harmful organic solvents. TRLC columns, packed with temperature-responsive polymers coupled to silica particles, exhibit a unique retention mechanism influenced by temperature-induced polymer hydration. An investigation of the physicochemical parameters driving separation at high and low temperatures is crucial for better column manufacturing and selectivity control. Assessment of predictability using a dataset of 139 molecules analyzed at different temperatures elucidated the molecular descriptors (MDs) relevant to retention mechanisms. Linear regression, support vector regression (SVR), and tree-based ensemble models were evaluated, with no standout performer. The precision, accuracy, and robustness of models were validated through metrics, such as r and mean absolute error (MAE), and statistical analysis. At

Identifiants

pubmed: 38907264
doi: 10.1186/s13321-024-00873-6
pii: 10.1186/s13321-024-00873-6
doi:

Types de publication

Journal Article

Langues

eng

Pagination

72

Subventions

Organisme : Horizon 2020 Framework Programme
ID : 861369
Organisme : Fonds Wetenschappelijk Onderzoek
ID : 30897864

Informations de copyright

© 2024. The Author(s).

Références

Lynen F, Ampe A, Bandini E, Baert M, Wicht K, Kajtazi A et al (2022) Perspectives in hydrophobic interaction temperature- responsive liquid chromatography (TRLC). LCGC N Am. 12:566–572. https://doi.org/10.56530/lcgc.na.vd2373d8
doi: 10.56530/lcgc.na.vd2373d8
Ansari MJ, Rajendran RR, Mohanto S, Agarwal U, Panda K, Dhotre K et al (2022) Poly(N-isopropylacrylamide)-based hydrogels for biomedical applications: a review of the state-of-the-art. Gels. 8(7):454. https://doi.org/10.3390/gels8070454
Lynen F, Heijl JMD, Prez FED, Brown R, Szucs R, Sandra P (2007) Evaluation of the temperature responsive stationary phase poly(n-isopropylacrylamide) in aqueous LC for the analysis of small molecules. Chromatographia. 8(66):143–150. https://doi.org/10.1365/s10337-007-0301-z
doi: 10.1365/s10337-007-0301-z
Teotia AK, Sami H, Kumar A (2015) Thermo-responsive polymers: structure and design of smart materials. Switch Responsive Surf Mater Biomed Appl. https://doi.org/10.1016/B978-0-85709-713-2.00001-8 .
Ampe A, Wicht K, Baert M, Broeckhoven K, Lynen F (2021) Investigation of the potential of mixed solvent mobile phases in temperature-responsive liquid chromatography (TRLC). Analyst. 11(146):6990–6996. https://doi.org/10.1039/d1an01684a
doi: 10.1039/d1an01684a
Wicht K, Baert M, Schipperges S, Doehren NV, Desmet G, Geem KMV, et al (2022) Enhanced sensitivity in comprehensive liquid chromatography: overcoming the dilution problem in LC × LC via temperature-responsive liquid chromatography. Anal Chem. https://doi.org/10.1021/acs.analchem.2c03300
Wicht K, Baert M, Muller M, Bandini E, Schipperges S, von Doehren N et al (2022) Comprehensive two-dimensional temperature-responsive × reversed phase liquid chromatography for the analysis of wine phenolics. Talanta. 1:236. https://doi.org/10.1016/j.talanta.2021.122889
doi: 10.1016/j.talanta.2021.122889
Bandini E, Wicht K, Ampe A, Baert M, Eghbali H, Lynen F (2022) Hyphenating temperature gradient elution with refractive index detection through temperature-responsive liquid chromatography. Anal Chim Acta. 10:1231. https://doi.org/10.1016/j.aca.2022.340441
doi: 10.1016/j.aca.2022.340441
Baert M, Wicht K, Hou Z, Szucs R, Prez FD, Lynen F (2020) Exploration of the selectivity and retention behavior of alternative polyacrylamides in temperature responsive liquid chromatography. Anal Chem. 7(92):9815–9822. https://doi.org/10.1021/acs.analchem.0c01321
doi: 10.1021/acs.analchem.0c01321
Todeschini R, Consonni V (2008) Handbook of Molecular Descriptors; John Wiley & Sons.
Si-Hung L, Izumi Y, Nakao M, Takahashi M, Bamba T (2022) Investigation of supercritical fluid chromatography retention behaviors using quantitative structure-retention relationships. Anal Chim Acta. 3:1197. https://doi.org/10.1016/j.aca.2022.339463
doi: 10.1016/j.aca.2022.339463
de Cripan SM, Cereto-Massagué A, Herrero P, Barcaru A, Canela N, Domingo-Almenara X (2022) Machine learning-based retention time prediction of trimethylsilyl derivatives of metabolites. Biomedicines. 4(10):879. https://doi.org/10.3390/biomedicines10040879
doi: 10.3390/biomedicines10040879
Roy K (ed) (2020) Ecotoxicological QSARs. Springer, US
Bodzioch K, Durand A, Kaliszan R, Baczek T, Heyden YV (2010) Advanced QSRR modeling of peptides behavior in RPLC. Talanta. 6(81):1711–1718. https://doi.org/10.1016/j.talanta.2010.03.028
doi: 10.1016/j.talanta.2010.03.028
Bouwmeester R, Martens L, Degroeve S (2019) Comprehensive and empirical evaluation of machine learning algorithms for small molecule LC retention time prediction. Anal Chem. 3(91):3694–3703. https://doi.org/10.1021/acs.analchem.8b05820
doi: 10.1021/acs.analchem.8b05820
Tian Y, Zhang Y (2022) A comprehensive survey on regularization strategies in machine learning. Inf Fusion. 80:146–166
doi: 10.1016/j.inffus.2021.11.005
Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B (Methodological). 1(58):267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
doi: 10.1111/j.2517-6161.1996.tb02080.x
Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 2(12):55–67. https://doi.org/10.1080/00401706.1970.10488634
doi: 10.1080/00401706.1970.10488634
Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B Stat Methodol. 4(67):301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x
doi: 10.1111/j.1467-9868.2005.00503.x
Biau G, Scornet E (2016) A random forest guided tour. Test. 25:197–227
doi: 10.1007/s11749-016-0481-7
Mastelini SM, Nakano FK, Vens C, de Leon Ferreira de Carvalho ACP (2022) Online extra trees regressor. IEEE Trans Neural Netw Learn Syst. p. 1–0. https://doi.org/10.1109/TNNLS.2022.3212859
Bentéjac C, Csörgő A, Martínez-Muñoz G (2021) A comparative analysis of gradient boosting algorithms. Artif Intell Rev.. 54:1937–1967
doi: 10.1007/s10462-020-09896-5
Natekin A, Knoll A (2013) Gradient boosting machines, a tutorial. Front Neurorobot. https://doi.org/10.3389/fnbot.2013.00021
Borkar MR, Coutinho EC (2022) Amalgamation of comparative protein modeling with quantitative structure-retention relationship for prediction of the chromatographic behavior of peptides. J Chromatogr A. 4(1669):462967. https://doi.org/10.1016/j.chroma.2022.462967
doi: 10.1016/j.chroma.2022.462967
Domingo-Almenara X, Guijas C, Billings E, Montenegro-Burke JR, Uritboonthai W, Aisporna AE et al (2019) The METLIN small molecule dataset for machine learning-based retention time prediction. Nat Commun. 10(1):5811
doi: 10.1038/s41467-019-13680-7 pubmed: 31862874 pmcid: 6925099
Sepehri B, Ghavami R, Farahbakhsh S, Ahmadi R (2022) Machine learning-based quantitative structure-retention relationship models for predicting the retention indices of volatile organic pollutants. Int J Environ Sci Technol. 3(19):1457–1466. https://doi.org/10.1007/s13762-021-03271-9
doi: 10.1007/s13762-021-03271-9
Souihi A, Mohai MP, Palm E, Malm L, Kruve A (2022) MultiConditionRT: predicting liquid chromatography retention time for emerging contaminants for a wide range of eluent compositions and stationary phases. J Chromatogr A. 3(1666):462867. https://doi.org/10.1016/j.chroma.2022.462867
doi: 10.1016/j.chroma.2022.462867
García CA, de-la Fuente AG, Barbas C, Otero A (2022) Probabilistic metabolite annotation using retention time prediction and meta-learned projections. J Cheminform. 14:33. https://doi.org/10.1186/s13321-022-00613-8
doi: 10.1186/s13321-022-00613-8 pubmed: 35672784 pmcid: 9172150
Kajtazi A, Russo G, Wicht K, Eghbali H, Lynen F (2023) Facilitating structural elucidation of small environmental solutes in RPLC-HRMS by retention index prediction. Chemosphere. p. 139361
Boelrijk J, van Herwerden D, Ensing B, Forré P, Samanipour S (2023) Predicting RP-LC retention indices of structurally unknown chemicals from mass spectrometry data. J Cheminform. 15(1):28
doi: 10.1186/s13321-023-00699-8 pubmed: 36829215 pmcid: 9960388
Sushko I, Novotarskyi S, Körner R, Pandey AK, Rupp M, Teetz W et al (2011) Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. J Comput-Aid Mol Des. 6(25):533–554. https://doi.org/10.1007/s10822-011-9440-2
doi: 10.1007/s10822-011-9440-2
Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci. 28(1):31–36
doi: 10.1021/ci00057a005
Raju KS, Govardhan A, Rani BP, Sridevi R, Murty MR, (eds). Proceedings of the Third International Conference on Computational Intelligence and Informatics. vol. 1090. Springer Singapore (2020)
Nalini Durga S, Usha Rani K (2020) A perspective overview on machine learning algorithms. In: Advances in Computational and Bio-Engineering: Proceeding of the International Conference on Computational and Bio Engineering, 2019, Volume 1. Springer. p. 353–364
Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimization of machine learning algorithms. In: Pereira F, Burges CJ, Bottou L, Weinberger KQ, editors. Advances in neural information processing systems. vol. 25. Curran Associates, Inc. Available from: https://proceedings.neurips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
Pudjihartono N, Fadason T, Kempa-Liehr AW, O’Sullivan JM (2022) A review of feature selection methods for machine learning-based disease risk prediction. Front Bioinform. 2:927312
doi: 10.3389/fbinf.2022.927312 pubmed: 36304293 pmcid: 9580915
Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc. 32(200):675–701
doi: 10.1080/01621459.1937.10503522
Hastie T, Tibshirani R, Friedman JH, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction, vol 2. Springer
doi: 10.1007/978-0-387-84858-7
Kar S, Roy K, Leszczynski J (2018) Applicability domain: a step toward confident predictions and decidability for QSAR modeling. In: nicolotti, O. (eds) Computational toxicology. Methods in molecular biology, vol 1800. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7899-1_6
Ghose AK, Crippen GM (1986) Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure-activity relationships I. Partition coefficients as a measure of hydrophobicity. J Comput Chem. 7:565–577. https://doi.org/10.1002/jcc.540070419
doi: 10.1002/jcc.540070419
Wildman SA, Crippen GM (1999) Prediction of physicochemical parameters by atomic contributions. J Chem Inf Comput Sci. 39(5):868–873
doi: 10.1021/ci990307l
Moriguchi I, Hirono S, Liu Q, NakagomE I, MatsushitA Y (1992) Simple method of calculating octanol/water partition coefficient. Chem Pharm Bull. 40(1):127–130
doi: 10.1248/cpb.40.127
Delaney JS (2004) ESOL: estimating aqueous solubility directly from molecular structure. J Chem Inf Comput Sci. 44(3):1000–1005
doi: 10.1021/ci034243x pubmed: 15154768
Labute P (2000) A widely applicable set of descriptors. J Mol Graph Model. 18(4–5):464–477
doi: 10.1016/S1093-3263(00)00068-1 pubmed: 11143563
Hall LH, Kier LB (1995) Electrotopological state indices for atom types: a novel combination of electronic, topological, and valence state information. J Chem Inf Comput Sci. 35(6):1039–1045
doi: 10.1021/ci00028a014
Khan AU et al (2016) Descriptors and their selection methods in QSAR analysis: paradigm for drug design. Drug Discov Today. 21(8):1291–1302
doi: 10.1016/j.drudis.2016.06.013 pubmed: 27326911
Burden FR (1989) Molecular identification number for substructure searches. J Chem Inf Comput Sci. 29(3):225–227
doi: 10.1021/ci00063a011
Grisoni F, Merk D, Byrne R, Schneider G (2018) Scaffold-hopping from synthetic drugs by holistic molecular representation. Sci Rep. 8(1):16469
doi: 10.1038/s41598-018-34677-0 pubmed: 30405170 pmcid: 6220272
Liu S, Cao C, Li Z (1998) Approach to estimation and prediction for normal boiling point (NBP) of alkanes based on a novel molecular distance-edge (MDE) vector, λ. J Chem Inf Comput Sci. 38(3):387–394
doi: 10.1021/ci970109z
Sanderson R (1988) Principles of electronegativity Part I. General nature. J Chem Educ. 65(2):112
doi: 10.1021/ed065p112
Schneider G, Neidhart W, Giller T, Schmid G (1999) “Scaffold-hopping’’ by topological pharmacophore search: a contribution to virtual screening. Angew Chem Int Edn.. 38(19):2894–2896
doi: 10.1002/(SICI)1521-3773(19991004)38:19<2894::AID-ANIE2894>3.0.CO;2-F
Todeschini R, Gramatica P (1997) SD-modelling and prediction by WHIM descriptors. Part 5. Theory development and chemical meaning of WHIM descriptors. Quantitative Struct Act Relationsh.. 16(2):113–119
doi: 10.1002/qsar.19970160203
Balaban AT (1994) Local versus global (ie atomic versus molecular) numerical modeling of molecular graphs. J Chem Inf Comput Sci. 34(2):398–402
doi: 10.1021/ci00018a028
Randić M (1993) Novel molecular descriptor for structure-property studies. Chem Phys Lett. 211(4–5):478–483
doi: 10.1016/0009-2614(93)87094-J
Crowe JE, Lynch MF, Town WG (1970) J. Chem. Soc. C. 990.
Gregori-Puigjané E, Mestres J (2006) SHED: Shannon entropy descriptors from topological feature distributions. J Chem Inf Model.. 46(4):1615–1622
doi: 10.1021/ci0600509 pubmed: 16859293
Klein CT, Kaiser D, Ecker G (2004) Topological distance based 3D descriptors for use in QSAR and diversity analysis. J Chem Inf Comput Sci. 44(1):200–209
doi: 10.1021/ci0256236 pubmed: 14741029
Basak SC, Magnuson V, Niemi G, Regal R, Veith G (1987) Topological indices: their nature, mutual relatedness, and applications. Math Model. 8:300–305
doi: 10.1016/0270-0255(87)90594-X
Consonni V, Todeschini R, Pavan M (2002) Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. J Chem Inf Comput Sci. 42(3):682–692
doi: 10.1021/ci015504a pubmed: 12086530
Geary RC (1954) The contiguity ratio and statistical mapping. Incorp Stat. 5(3):115–146
Silverman B, Platt DE (1996) Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition. J Med Chem. 39(11):2129–2140
doi: 10.1021/jm950589q pubmed: 8667357
Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL (2012) Quantifying the chemical beauty of drugs. Nat Chem. 4(2):90–98
doi: 10.1038/nchem.1243 pubmed: 22270643 pmcid: 3524573
Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Combin Chem. 1(1):55–68
doi: 10.1021/cc9800071
Hemmer MC, Steinhauer V, Gasteiger J (1999) Deriving the 3D structure of organic molecules from their infrared spectra. Vibr Spectrosc. 19(1):151–164
doi: 10.1016/S0924-2031(99)00014-4

Auteurs

Elena Bandini (E)

Separation Science Group, Department of Organic and Macromolecular Chemistry, Univeristy of Ghent, Krijgslaan 281 S4bis, Ghent, 9000, Belgium. elena.bandini@ugent.be.

Rodrigo Castellano Ontiveros (R)

School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, 11428, Sweden.

Ardiana Kajtazi (A)

Separation Science Group, Department of Organic and Macromolecular Chemistry, Univeristy of Ghent, Krijgslaan 281 S4bis, Ghent, 9000, Belgium.

Hamed Eghbali (H)

Packaging and Specialty Plastics R&D, Dow Benelux B.V., Terneuzen, 4530 AA, the Netherlands.

Frédéric Lynen (F)

Separation Science Group, Department of Organic and Macromolecular Chemistry, Univeristy of Ghent, Krijgslaan 281 S4bis, Ghent, 9000, Belgium.

Classifications MeSH