Similar maximal aerobic capacity but lower energy efficiency during low-to-moderate exercise in women with constitutional thinness: new results from the NUTRILEAN study.

Aerobic fitness Constitutional thinness Exercise Submaximal capacities

Journal

European journal of applied physiology
ISSN: 1439-6327
Titre abrégé: Eur J Appl Physiol
Pays: Germany
ID NLM: 100954790

Informations de publication

Date de publication:
21 Jun 2024
Historique:
received: 29 03 2024
accepted: 06 06 2024
medline: 21 6 2024
pubmed: 21 6 2024
entrez: 21 6 2024
Statut: aheadofprint

Résumé

Individuals with constitutional thinness have been presented with a lower muscular energy metabolism at the cellular level but their effective aerobic capacities and exercise-related energy efficiency remains unexplored. The present study compares maximal and sub-maximal aerobic capacities between subjects with constitutional thinness and age-matched normal-weight ones. Anthropometric measures, body composition (Dual-X-ray absorptiometry), physical activity and sedentary time (GT3x actigraphs), and maximal aerobic capacities (cycling CT had a lower body mass and body mass index compared to NW. Absolute peak oxygen uptake and maximal aerobic power were lower in CT subjects compared to NW (ES: - 1.63 [- 2.40; - 0.86] and - 1.32 [- 2.05; - 0.58], p < 0.001). Constitutionally thin women do not show impaired aerobic capacities at moderate to maximal intensities despite lower energy efficiency while cycling and walking at low-to-moderate intensities.

Identifiants

pubmed: 38904774
doi: 10.1007/s00421-024-05540-0
pii: 10.1007/s00421-024-05540-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Aadland E, Ylvisåker E (2015) Reliability of the Actigraph GT3X+ accelerometer in adults under free-living conditions. PLoS ONE 10:e0134606. https://doi.org/10.1371/journal.pone.0134606
doi: 10.1371/journal.pone.0134606 pubmed: 26274586 pmcid: 4537282
Bailly M, Boscaro A, Pereira B et al (2021a) Is constitutional thinness really different from anorexia nervosa? A systematic review and meta-analysis. Rev Endocr Metab Disord 22:913–971. https://doi.org/10.1007/s11154-021-09650-4
doi: 10.1007/s11154-021-09650-4 pubmed: 33929658
Bailly M, Boscaro A, Pereira B et al (2021b) Underweight but not underfat: is fat-free mass a key factor in constitutionally thin women? Eur J Clin Nutr 75:1764–1770. https://doi.org/10.1038/s41430-021-00895-5
doi: 10.1038/s41430-021-00895-5 pubmed: 33772214
Bailly M, Germain N, Féasson L et al (2020a) Skeletal muscle of females and males with constitutional thinness: a low intramuscular lipid content and oxidative profile. Appl Physiol Nutr Metab Physiol Appl Nutr Metab 45:1287–1298. https://doi.org/10.1139/apnm-2020-0068
doi: 10.1139/apnm-2020-0068
Bailly M, Germain N, Galusca B et al (2020b) Definition and diagnosis of constitutional thinness: a systematic review. Br J Nutr. https://doi.org/10.1017/S0007114520001440
doi: 10.1017/S0007114520001440 pubmed: 32539896
Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381
doi: 10.1249/00005768-198205000-00012 pubmed: 7154893
Boscaro A, Verney J, Tremblay A et al (2023) Challenges of considering both extremities of the weight status spectrum to better understand obesity: insights from the NUTRILEAN project in constitutionally thin individuals. Int J Obes 47:1171–1177. https://doi.org/10.1038/s41366-023-01360-y
doi: 10.1038/s41366-023-01360-y
Bossu C, Galusca B, Normand S et al (2007) Energy expenditure adjusted for body composition differentiates constitutional thinness from both normal subjects and anorexia nervosa. Am J Physiol Endocrinol Metab 292:E132–E137. https://doi.org/10.1152/ajpendo.00241.2006
doi: 10.1152/ajpendo.00241.2006 pubmed: 16912058
Bou Khalil R, Sultan A, Seneque M et al (2022) Clinical correlates of measured and predicted resting energy expenditure in patients with anorexia nervosa: a retrospective cohort study. Nutrients 14:2727. https://doi.org/10.3390/nu14132727
doi: 10.3390/nu14132727 pubmed: 35807906 pmcid: 9269154
Casper R, Schoeller D, Kushner R et al (1991) Total daily energy expenditure and activity level in anorexia nervosa. Am J Clin Nutr 53:1143–1150. https://doi.org/10.1093/ajcn/53.5.1143
doi: 10.1093/ajcn/53.5.1143 pubmed: 1850575
Choi L, Ward SC, Schnelle JF, Buchowski MS (2012) Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. Med Sci Sports Exerc 44:2009–2016. https://doi.org/10.1249/MSS.0b013e318258cb36
doi: 10.1249/MSS.0b013e318258cb36 pubmed: 22525772 pmcid: 3443532
Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. L. Erlbaum Associates, Hillsdale
Fares E-J, Isacco L, Monnard CR et al (2017) Reliability of low-power cycling efficiency in energy expenditure phenotyping of inactive men and women. Physiol Rep 5:e13233. https://doi.org/10.14814/phy2.13233
Feise RJ (2002) Do multiple outcome measures require p-value adjustment? BMC Med Res Methodol 2:8. https://doi.org/10.1186/1471-2288-2-8
doi: 10.1186/1471-2288-2-8 pubmed: 12069695 pmcid: 117123
Fernández Menéndez A, Saubade M, Millet GP, Malatesta D (2019) Energy-saving walking mechanisms in obese adults. J Appl Physiol 126:1250–1258. https://doi.org/10.1152/japplphysiol.00473.2018
doi: 10.1152/japplphysiol.00473.2018 pubmed: 30817245
Fernández Menéndez A, Uva B, Favre L et al (2020) Mass-normalized internal mechanical work in walking is not impaired in adults with class III obesity. J Appl Physiol 129:194–203. https://doi.org/10.1152/japplphysiol.00837.2019
doi: 10.1152/japplphysiol.00837.2019 pubmed: 32584667
Galusca B, Verney J, Meugnier E et al (2018) Reduced fibre size, capillary supply and mitochondrial activity in constitutional thinness’ skeletal muscle. Acta Physiol Oxf Engl 224:e13097. https://doi.org/10.1111/apha.13097
doi: 10.1111/apha.13097
Germain N, Galusca B, Caron-Dorval D et al (2014) Specific appetite, energetic and metabolomics responses to fat overfeeding in resistant-to-bodyweight-gain constitutional thinness. Nutr Diabetes 4:e126–e126. https://doi.org/10.1038/nutd.2014.17
doi: 10.1038/nutd.2014.17 pubmed: 25027794 pmcid: 5189928
Heusner AA (1982) Energy metabolism and body size I. Is the 0.75 mass exponent of Kleiber’s equation a statistical artifact? Respir Physiol 48:1–12. https://doi.org/10.1016/0034-5687(82)90046-9
doi: 10.1016/0034-5687(82)90046-9 pubmed: 7111915
Kleiber M (1947) Body size and metabolic rate. Physiol Rev 27:511–541. https://doi.org/10.1152/physrev.1947.27.4.511
doi: 10.1152/physrev.1947.27.4.511 pubmed: 20267758
Kosmiski L, Schmiege SJ, Mascolo M et al (2014) Chronic starvation secondary to anorexia nervosa is associated with an adaptive suppression of resting energy expenditure. J Clin Endocrinol Metab 99:908–914. https://doi.org/10.1210/jc.2013-1694
doi: 10.1210/jc.2013-1694 pubmed: 24302748
Kozey-Keadle S, Libertine A, Lyden K et al (2011) Validation of wearable monitors for assessing sedentary behavior. Med Sci Sports Exerc 43:1561–1567. https://doi.org/10.1249/MSS.0b013e31820ce174
doi: 10.1249/MSS.0b013e31820ce174 pubmed: 21233777
Lazzer S, Boirie Y, Bitar A et al (2003) Assessment of energy expenditure associated with physical activities in free-living obese and nonobese adolescents. Am J Clin Nutr 78:471–479. https://doi.org/10.1093/ajcn/78.3.471
doi: 10.1093/ajcn/78.3.471 pubmed: 12936931
Ling Y, Carayol J, Galusca B et al (2019) Persistent low body weight in humans is associated with higher mitochondrial activity in white adipose tissue. Am J Clin Nutr 110:605–616. https://doi.org/10.1093/ajcn/nqz144
doi: 10.1093/ajcn/nqz144 pubmed: 31374571 pmcid: 6736451
Ling Y, Galusca B, Hager J et al (2016) Rational and design of an overfeeding protocol in constitutional thinness: understanding the physiology, metabolism and genetic background of resistance to weight gain. Ann Endocrinol 77:563–569. https://doi.org/10.1016/j.ando.2016.06.001
doi: 10.1016/j.ando.2016.06.001
Ling Y, Galusca B, Martin F-P et al (2020) Resistance to lean mass gain in constitutional thinness in free-living conditions is not overpassed by overfeeding. J Cachexia Sarcopenia Muscle 11:1187–1199. https://doi.org/10.1002/jcsm.12572
doi: 10.1002/jcsm.12572 pubmed: 32274897 pmcid: 7567161
Marra M, Pasanisi F, Montagnese C et al (2007) BMR variability in women of different weight. Clin Nutr 26:567–572. https://doi.org/10.1016/j.clnu.2007.03.006
doi: 10.1016/j.clnu.2007.03.006 pubmed: 17517450
Pasanisi F, Pace L, Fonti R et al (2013) Evidence of brown fat activity in constitutional leanness. J Clin Endocrinol Metab 98:1214–1218. https://doi.org/10.1210/jc.2012-2981
doi: 10.1210/jc.2012-2981 pubmed: 23393181
Peyrot N, Thivel D, Isacco L et al (2009) Do mechanical gait parameters explain the higher metabolic cost of walking in obese adolescents? J Appl Physiol 106:1763–1770. https://doi.org/10.1152/japplphysiol.91240.2008
doi: 10.1152/japplphysiol.91240.2008 pubmed: 19246657
Reger M, Peterman JE, Kram R, Byrnes WC (2013) Exercise efficiency of low power output cycling. Scand J Med Sci Sports 23:713–721. https://doi.org/10.1111/j.1600-0838.2012.01448.x
doi: 10.1111/j.1600-0838.2012.01448.x pubmed: 22462656
Riveros-McKay F, Mistry V, Bounds R et al (2019) Genetic architecture of human thinness compared to severe obesity. PLoS Genet 15:e1007603. https://doi.org/10.1371/journal.pgen.1007603
doi: 10.1371/journal.pgen.1007603 pubmed: 30677029 pmcid: 6345421
Sasaki JE, John D, Freedson PS (2011) Validation and comparison of ActiGraph activity monitors. J Sci Med Sport 14:411–416. https://doi.org/10.1016/j.jsams.2011.04.003
doi: 10.1016/j.jsams.2011.04.003 pubmed: 21616714
Tudor-Locke C, Camhi S, Troiano R (2012) A catalog of rules, variables, and definitions applied to accelerometer data in the national health and nutrition examination survey, 2003–2006. Prev Chronic Dis. https://doi.org/10.5888/pcd9.110332
doi: 10.5888/pcd9.110332 pubmed: 22698174 pmcid: 3457743
Wasserman K, Whipp BJ, Koyl SN, Beaver WL (1973) Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 35:236–243. https://doi.org/10.1152/jappl.1973.35.2.236
doi: 10.1152/jappl.1973.35.2.236 pubmed: 4723033
Zhou N (2021) Assessment of aerobic exercise capacity in obesity, which expression of oxygen uptake is the best? Sports Med Health Sci 3:138–147. https://doi.org/10.1016/j.smhs.2021.01.001
doi: 10.1016/j.smhs.2021.01.001 pubmed: 35784518 pmcid: 9219259

Auteurs

Julien Verney (J)

Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Clermont Auvergne University, CS 60026, 63178, Aubière Cedex, France. julien.verney@uca.fr.

Céline Lambert (C)

Biostatistics Unit, DRCI, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France.

Laurie Isacco (L)

Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Clermont Auvergne University, CS 60026, 63178, Aubière Cedex, France.

Duane Beraud (D)

Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Clermont Auvergne University, CS 60026, 63178, Aubière Cedex, France.

Audrey Boscaro (A)

Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Clermont Auvergne University, CS 60026, 63178, Aubière Cedex, France.

Bruno Pereira (B)

Biostatistics Unit, DRCI, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France.

Frédéric Costes (F)

Department of Sport Medicine and Functional Explorations, CHU Clermont-Ferrand, CRNH, INRA, University of Clermont Auvergne, 63000, Clermont-Ferrand, France.

Fabrice Rannou (F)

Department of Sport Medicine and Functional Explorations, CHU Clermont-Ferrand, CRNH, INRA, University of Clermont Auvergne, 63000, Clermont-Ferrand, France.

Valérie Julian (V)

Department of Sport Medicine and Functional Explorations, CHU Clermont-Ferrand, CRNH, INRA, University of Clermont Auvergne, 63000, Clermont-Ferrand, France.

Martine Duclos (M)

Department of Sport Medicine and Functional Explorations, CHU Clermont-Ferrand, CRNH, INRA, University of Clermont Auvergne, 63000, Clermont-Ferrand, France.

Yves Boirie (Y)

Department of Clinical Nutrition, CHU Clermont-Ferrand, Diet and Musculoskeletal Health Team, CRNH, INRA, University of Clermont Auvergne, 63000, Clermont-Ferrand, France.

David Thivel (D)

Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Clermont Auvergne University, CS 60026, 63178, Aubière Cedex, France.

Mélina Bailly (M)

Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Clermont Auvergne University, CS 60026, 63178, Aubière Cedex, France.

Classifications MeSH