Black seed assisted synthesis, characterization, free radical scavenging, antimicrobial and anti-inflammatory activity of iron oxide nanoparticles.
Anti-inflammatory
Antimicrobial
Antioxidant
Characterization
Iron oxide nanoparticles
Journal
BMC complementary medicine and therapies
ISSN: 2662-7671
Titre abrégé: BMC Complement Med Ther
Pays: England
ID NLM: 101761232
Informations de publication
Date de publication:
20 Jun 2024
20 Jun 2024
Historique:
received:
19
01
2024
accepted:
12
06
2024
medline:
21
6
2024
pubmed:
21
6
2024
entrez:
20
6
2024
Statut:
epublish
Résumé
Iron nanoparticles comprise a significant class of inorganic nanoparticles, which discover applications in various zones by prudence of their few exciting properties. This study achieved the green synthesis of iron oxide nanoparticles (IONPs) by black cumin seed (Nigella sativa) extract, which acts as a reducing and capping agent. The iron nanoparticles and black cumin extract were synthesized in three different concentrations: (01:01, 02:04,01:04). UV-visible spectroscopy, XRD, FTIR, and AFM characterized the synthesized iron oxide nanoparticles. UV-visible spectra show the maximum absorbance peak of 01:01 concentration at 380 nm. The other concentrations, such as 02:04, peaked at 400 nm and 01:04 at 680 nm, confirming the formation of iron oxide nanoparticles. AFM analysis reveals the spherical shape of iron oxide nanoparticles. The XRD spectra reveal the (fcc) cubic crystal structure of the iron oxide nanoparticles. The FTIR analysis's peaks at 457.13, 455.20, and 457.13 cm-1 depict the characteristic iron nanoparticle synthesis. The black cumin extract-mediated iron oxide nanoparticles show substantial antibacterial, antifungal, antioxidant and anti-inflammatory activity in a dose-dependent manner.
Identifiants
pubmed: 38902620
doi: 10.1186/s12906-024-04552-9
pii: 10.1186/s12906-024-04552-9
doi:
Substances chimiques
Anti-Inflammatory Agents
0
Plant Extracts
0
Anti-Infective Agents
0
Free Radical Scavengers
0
Ferric Compounds
0
ferric oxide
1K09F3G675
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
241Informations de copyright
© 2024. The Author(s).
Références
Muteeb G. Nanotechnology—A light of hope for combating antibiotic resistance. Microorganisms. 2023;11(6):1489. https://doi.org/10.3390/microorganisms11061489 .
doi: 10.3390/microorganisms11061489
pubmed: 37374990
pmcid: 10302692
Balderrama-González AS, Piñón-Castillo HA, Ramírez-Valdespino CA, Landeros-Martínez LL, Orrantia-Borunda E, Esparza-Ponce HE. Antimicrobial resistance and inorganic nanoparticles. Int J Mol Sci. 2021;22(23):12890. https://doi.org/10.3390/ijms222312890 .
doi: 10.3390/ijms222312890
pubmed: 34884695
pmcid: 8657868
Mubeen B, Ansar AN, Rasool R, et al. Nanotechnology as a novel approach in combating microbes providing an alternative to antibiotics. Antibiot (Basel). 2021;10(12):1473. https://doi.org/10.3390/antibiotics10121473 .
doi: 10.3390/antibiotics10121473
Gupta A, Mumtaz S, Li CH, Hussain I, Rotello VM. Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev. 2019;48(2):415–27. https://doi.org/10.1039/c7cs00748e .
doi: 10.1039/c7cs00748e
pubmed: 30462112
pmcid: 6340759
Abdulsada FM, Hussein NN, Sulaiman GM, Al Ali A, Alhujaily M. Evaluation of the antibacterial properties of iron oxide, polyethylene glycol, and gentamicin conjugated nanoparticles against some multidrug-resistant bacteria. J Funct Biomater. 2022;13(3):138. https://doi.org/10.3390/jfb13030138 .
doi: 10.3390/jfb13030138
pubmed: 36135573
pmcid: 9503097
Xu C, Akakuru OU, Zheng J, Wu A. Applications of iron oxide-based magnetic nanoparticles in the diagnosis and treatment of bacterial infections. Front Bioeng Biotechnol. 2019;7. https://doi.org/10.3389/fbioe.2019.00141 .
Arakha M, Pal S, Samantarrai D, et al. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep. 2015;5(1):1–12. https://doi.org/10.1038/srep14813 .
doi: 10.1038/srep14813
Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA, Lisitsyn AB. Do iron oxide nanoparticles have significant antibacterial properties? Antibiot (Basel). 2021;10(7):884. https://doi.org/10.3390/antibiotics10070884 .
doi: 10.3390/antibiotics10070884
Wahab S, Salman A, Khan Z, Khan S, Krishnaraj C, Yun SI. Metallic nanoparticles: a promising arsenal against antimicrobial resistance—unraveling mechanisms and enhancing medication efficacy. Int J Mol Sci. 2023;24(19):14897. https://doi.org/10.3390/ijms241914897 .
doi: 10.3390/ijms241914897
pubmed: 37834344
pmcid: 10573543
Ghasemi S, Dabirian S, Kariminejad F, et al. Process optimization for green synthesis of silver nanoparticles using Rubus discolor leaves extract and its biological activities against multi-drug resistant bacteria and cancer cells. Sci Rep. 2024;14(1):1–19. https://doi.org/10.1038/s41598-024-54702-9 .
doi: 10.1038/s41598-024-54702-9
Tharani M, Rajeshkumar S, Al-Ghanim KA, Nicoletti M, Sachivkina N, Govindarajan M. Terminalia chebula-assisted silver nanoparticles: biological potential, synthesis, characterization, and ecotoxicity. Biomedicines. 2023;11(5). https://doi.org/10.3390/biomedicines11051472 .
Salman MT, Khan RA, Shukla I. Antimicrobial Activity of Nigella Sativa Linn. Seed Oilagainst Multi-Drug Resistant Bacteria from Clinical Isolates.; 2008.
Bakathir HA, Abbas NA. Detection of the antibacterial effect of Nigella Sativa ground seedswith water. Afr J Tradit Complement Altern Med. 2011;8(2):159. https://doi.org/10.4314/ajtcam.v8i2.63203 .
doi: 10.4314/ajtcam.v8i2.63203
pubmed: 22238497
Hanafy MS, Hatem ME. Studies on the antimicrobial activity of Nigella sativa seed (black cumin). J Ethnopharmacol. 1991;34(2–3):275–8. https://doi.org/10.1016/0378-8741(91)90047-h .
doi: 10.1016/0378-8741(91)90047-h
pubmed: 1795532
Abo-Neima SE, El-Sheekh MM, Al-Zaban MI, EL-Sayed AIM. Antibacterial and anti-corona virus (229E) activity of Nigella sativa oil combined with photodynamic therapy based on methylene blue in wound infection: in vitro and in vivo study. BMC Microbiol. 2023;23(1). https://doi.org/10.1186/s12866-023-03018-1 .
Rajeshkumar S. Cytotoxicity of zinc oxide nanoparticles synthesized from Punica granatum extract. J Nanosci Nanotechnol. 2017;17(3):1677–83.
Siddiqi KS, ur Rahman A, Tajuddin, Husen A. Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nanoscale Res Lett. 2016;11(1). https://doi.org/10.1186/s11671-016-1714-0 .
Sadhasivam S, Vinayagam V, Balasubramaniyan M. Recent advancement in biogenic synthesis of iron nanoparticles. J Mol Struct. 2020;1217(128372):128372. https://doi.org/10.1016/j.molstruc.2020.128372 .
doi: 10.1016/j.molstruc.2020.128372
Abdallah RM, Al-Haddad RMS. Optical and morphology properties of the magnetite (Fe
doi: 10.1088/1742-6596/1829/1/012022
Tharani K, Nehru LC. Synthesis and characterization of iron oxide nanoparticle by precipitation method. Accessed April 5, 2024. https://www.arcjournals.org/pdfs/ijarps/v2-i8/6.pdf .
Karpagavinayagam P, Vedhi C. Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum. 2019;160:286–92. https://doi.org/10.1016/j.vacuum.2018.11.043 .
doi: 10.1016/j.vacuum.2018.11.043
Ansari MA, Jahan N. Structural and optical properties of BaO nanoparticles synthesized by facile co-precipitation method. Mater Highlights. 2021;2(1–2):23. https://doi.org/10.2991/mathi.k.210226.001 .
doi: 10.2991/mathi.k.210226.001
Devi HS, Singh TD. Iron oxide nanoparticles synthesis through a benign approach and its catalytic application. Perspect Sci (Neth). 2016;8:287–9. https://doi.org/10.1016/j.pisc.2016.04.054 .
doi: 10.1016/j.pisc.2016.04.054
Hussain A, Yasar M, Ahmad G et al. Synthesis, characterization, and applications of iron oxide nanoparticles. Int J Health Sci (Qassim). 2023;17(4):3–10. Accessed April 5, 2024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321464/ .
Lesiak B, Rangam N, Jiricek P, et al. Surface study of Fe3O4 nanoparticles functionalized with biocompatible adsorbed molecules. Front Chem. 2019;7. https://doi.org/10.3389/fchem.2019.00642 .
Al-Kalifawi EJ. Green synthesis of magnetite iron oxide nanoparticles by using Al-Abbas’s (AS) hund fruit (Citrus medica) var. Sarcodactylis Swingle extract and used in Al-’alqami river water treatment. J Nat Sci Res. 2015;5(20):125–35.
Mazrouaa AM, Mohamed MG, Fekry M. Physical and magnetic properties of iron oxide nanoparticles with a different molar ratio of ferrous and ferric. Egypt J Pet. 2019;28(2):165–71. https://doi.org/10.1016/j.ejpe.2019.02.002 .
doi: 10.1016/j.ejpe.2019.02.002
Winiarczyk K, Gac W, Góral-Kowalczyk M, Surowiec Z. Magnetic properties of iron oxide nanoparticles with a DMSA-modified surface. Hyperfine Interact. 2021;242(1). https://doi.org/10.1007/s10751-021-01768-w .
Prasad C, Gangadhara S, Venkateswarlu P. Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity. Appl Nanosci. 2016;6(6):797–802. https://doi.org/10.1007/s13204-015-0485-8 .
doi: 10.1007/s13204-015-0485-8
Zambri NDS, Taib NI, Abdul Latif F, Mohamed Z. Utilization of neem leaf extract on biosynthesis of iron oxide nanoparticles. Molecules. 2019;24(20):3803. https://doi.org/10.3390/molecules24203803 .
doi: 10.3390/molecules24203803
pubmed: 31652583
pmcid: 6832892
Martínez-Mera I, Espinosa-Pesqueira ME, Pérez-Hernández R, Arenas-Alatorre J. Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature. Mater Lett. 2007;61(23–24):4447–51. https://doi.org/10.1016/j.matlet.2007.02.018 .
doi: 10.1016/j.matlet.2007.02.018
Baabu PRS, Kumar HK, Gumpu MB, Babu KJ, Kulandaisamy AJ, Rayappan JBB. Iron oxide nanoparticles: a review on the province of its compounds, properties and biological applications. Mater (Basel). 2022;16(1):59. https://doi.org/10.3390/ma16010059 .
doi: 10.3390/ma16010059
Ali A, Zafar H, Zia M, et al. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl. 2016;9:49–67. https://doi.org/10.2147/nsa.s99986 .
doi: 10.2147/nsa.s99986
pubmed: 27578966
pmcid: 4998023
Gervits NE, Gippius AA, Tkachev AV, et al. Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents. Beilstein J Nanotechnol. 2019;10:1964–72. https://doi.org/10.3762/bjnano.10.193 .
doi: 10.3762/bjnano.10.193
pubmed: 31667044
pmcid: 6808196
Hafaid I, Gallouz A, Mohamed Hassen W, et al. Sensitivity improvement of an Impedimetric Immunosensor using Functionalized Iron Oxide nanoparticles. J Sens. 2009;2009:1–12. https://doi.org/10.1155/2009/746548 .
doi: 10.1155/2009/746548
Wetterskog E, Agthe M, Mayence A, et al. Precise control over shape and size of iron oxide nanocrystals suitable for assembly into ordered particle arrays. Sci Technol Adv Mater. 2014;15(5):055010. https://doi.org/10.1088/1468-6996/15/5/055010 .
doi: 10.1088/1468-6996/15/5/055010
pubmed: 27877722
pmcid: 5099683
Madivoli ES, Kareru PG, Maina EG, Nyabola AO, Wanakai SI, Nyang’au JO. Biosynthesis of iron nanoparticles using Ageratum conyzoides extracts, their antimicrobial and photocatalytic activity. SN Appl Sci. 2019;1(5). https://doi.org/10.1007/s42452-019-0511-7 .
Mohamed A, Atta RR, Kotp AA, et al. Green synthesis and characterization of iron oxide nanoparticles for the removal of heavy metals (Cd2 + and Ni2+) from aqueous solutions with Antimicrobial Investigation. Sci Rep. 2023;13(1):1–30. https://doi.org/10.1038/s41598-023-31704-7 .
doi: 10.1038/s41598-023-31704-7
Batool F, Iqbal MS, Khan SUD, Khan J, Ahmed B, Qadir MI. Biologically synthesized iron nanoparticles (FeNPs) from Phoenix dactylifera have anti-bacterial activities. Sci Rep. 2021;11(1). https://doi.org/10.1038/s41598-021-01374-4 .
Abou-Dobara MI, Kamel MA, El-Sayed AKA, El-Zahed MM. Antibacterial activity of extracellular biosynthesized iron oxide nanoparticles against locally isolated β-lactamase-producing Escherichia coli from Egypt. Discov Appl Sci. 2024;6(3). https://doi.org/10.1007/s42452-024-05770-z .
Lee J, Lee JH, Lee SY, et al. Antioxidant iron oxide nanoparticles: their biocompatibility and bioactive properties. Int J Mol Sci. 2023;24(21):15901. https://doi.org/10.3390/ijms242115901 .
doi: 10.3390/ijms242115901
pubmed: 37958885
pmcid: 10649306
Kumar H, Bhardwaj K, Nepovimova E, et al. Antioxidant functionalized nanoparticles: a combat against oxidative stress. Nanomaterials (Basel). 2020;10(7):1334. https://doi.org/10.3390/nano10071334 .
doi: 10.3390/nano10071334
pubmed: 32650608
Ge X, Cao Z, Chu L. The antioxidant effect of the metal and metal-oxide nanoparticles. Antioxid (Basel). 2022;11(4):791. https://doi.org/10.3390/antiox11040791 .
doi: 10.3390/antiox11040791
Sandhya J, Kalaiselvam S. Biogenic synthesis of magnetic iron oxide nanoparticles using inedible borassus flabellifer seed coat: characterization, antimicrobial, antioxidant activity and in vitro cytotoxicity analysis. Mater Res Express. 2020;7(1):015045. https://doi.org/10.1088/2053-1591/ab6642 .
doi: 10.1088/2053-1591/ab6642
Shahid H, Shah AA, Shah Bukhari SNU, et al. Synthesis, characterization, and biological properties of iron oxide nanoparticles synthesized from Apis mellifera honey. Molecules. 2023;28(18):6504. https://doi.org/10.3390/molecules28186504 .
doi: 10.3390/molecules28186504
pubmed: 37764280
pmcid: 10534332
Gerogianni A, Bal M, Mohlin C, et al. In vitro evaluation of iron oxide nanoparticle-induced thromboinflammatory response using a combined human whole blood and endothelial cell model. Front Immunol. 2023;14. https://doi.org/10.3389/fimmu.2023.1101387 .
Dukhinova MS, Prilepskii AY, Shtil AA, Vinogradov VV. Metal oxide nanoparticles in therapeutic regulation of macrophage functions. Nanomaterials (Basel). 2019;9(11):1631. https://doi.org/10.3390/nano9111631 .
doi: 10.3390/nano9111631
pubmed: 31744137